求當(dāng)m為何值時,f(x)=x2+2mx+3m+4.
(1)有且僅有一個零點(diǎn);(2)有兩個零點(diǎn)且均比-1大;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)函數(shù)的導(dǎo)函數(shù)為,若函數(shù)的圖像關(guān)于直線對稱,且.
(1)求實(shí)數(shù)a、b的值
(2)若函數(shù)恰有三個零點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知,且.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若存在,使,則稱是的一
個"不動點(diǎn)".已知二次函數(shù)
(1)當(dāng)時,求函數(shù)的不動點(diǎn);
(2)對任意實(shí)數(shù),函數(shù)恒有兩個相異的不動點(diǎn),求的取值范圍;
(3)在(2)的條件下,若的圖象上兩點(diǎn)的橫坐標(biāo)是的不動點(diǎn),
且兩點(diǎn)關(guān)于直線對稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)是奇函數(shù)。
(1)求的值;
(2)用定義證明在上為減函數(shù);
(3)若對于任意,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)如果對任意恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)的兩個極值點(diǎn)分別為判斷下列三個代數(shù)式:
①②③中有幾個為定值?并且是定值請求出;
若不是定值,請把不是定值的表示為函數(shù)并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(,).
(I)若函數(shù)在其定義域內(nèi)是減函數(shù),求的取值范圍;
(II)函數(shù)是否有最小值?若有最小值,指出其取得最小值時的值,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com