【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點(diǎn),且,求的值;
(2)若,是直線上的動點(diǎn),過作圓的兩條切線,,切點(diǎn)分別為,,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(Ⅰ);(Ⅱ)直線過定點(diǎn).
【解析】試題分析:(1)利用點(diǎn)到直線的距離公式,結(jié)合點(diǎn)O到l的距離. 可求k的值;
(2)由題意可知:O、P、C、D四點(diǎn)共圓且在以O(shè)P為直徑的圓上,C、D在圓O:x2+y2=2上可得直線C,D的方程,即可求得直線CD是否過定點(diǎn).
試題解析:
(Ⅰ)因?yàn)?/span>,所以原點(diǎn)到直線的距離為,
又因?yàn)?/span>,所以.
(Ⅱ)由題意可知,,,四點(diǎn)共圓,且在以為直徑的圓上,
設(shè),則以為直徑的圓的方程為:
,即,
又,在圓上,
所以直線CD的方程為,即.
因?yàn)?/span>,所以
所以直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點(diǎn).
(1)若分別是的中點(diǎn),求證:平面;
(2)若是上靠近點(diǎn)的一個(gè)三等分點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn),
(1)寫出的方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和.
(1)若函數(shù)在區(qū)間不單調(diào),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過點(diǎn),且被軸截得的線段長為4,記動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)問: 軸上是否存在一定點(diǎn),使得對于曲線上的任意兩點(diǎn)和,當(dāng)時(shí),恒有與的面積之比等于?若存在,則求點(diǎn)的坐標(biāo),否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(Ⅰ)證明:AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明:面AED⊥面A1FD1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為:(,為常數(shù)).
(Ⅰ)判斷曲線的形狀;
(Ⅱ)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,短軸的兩個(gè)端點(diǎn)分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的左、右焦點(diǎn)分別為、,且經(jīng)過點(diǎn)
(I)求橢圓C的方程:
(II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點(diǎn),D點(diǎn)為橢圓C上的動點(diǎn),且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時(shí)直線AB的方程:若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com