【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點(diǎn).

(1)若分別是的中點(diǎn),求證:平面;

(2)若上靠近點(diǎn)的一個(gè)三等分點(diǎn),求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

試題分析:(1)連結(jié)于點(diǎn),連結(jié),易知的中點(diǎn),然后利用中位線定理可使問題得證;(2)為原點(diǎn)建立空間直角坐標(biāo)系,然后求出相應(yīng)點(diǎn)的坐標(biāo)與向量,由此求得平面與平面的法向量,從而利用空間夾角公式求解

試題解析:(1連結(jié)于點(diǎn),連結(jié),易知的中點(diǎn),

因?yàn)?/span>分別是的中點(diǎn),所以,且,

所以四邊形是平行四邊形,所以

因?yàn)?/span>平面平面,

所以平面........................ 6分

(2)建立如圖所示的空間直角坐標(biāo)系,

則點(diǎn),設(shè)平面的一個(gè)法向量為

則由,

,得,

易知平面的一個(gè)法向量為,設(shè)二面角的大小為,則

...................12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角的對(duì)邊分別為,且

1)求角的大。

2)若的面積為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

I求證:在區(qū)間上單調(diào)遞增;

II,函數(shù)在區(qū)間上的最大值為,求的試題分析式.并判斷是否有最大值和最小值,請(qǐng)說明理由參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集是,求不等式解集;

(2)當(dāng)時(shí),對(duì)任意的成立,實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程兩個(gè)不等的負(fù)根;方程實(shí)根.若”為真,“假,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三文科名學(xué)生參加了月份的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、語文情況,利用隨機(jī)數(shù)表法從中抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的名學(xué)生的數(shù)學(xué)、語文成績(jī)?nèi)缦卤?

(1)將學(xué)生編號(hào)為:, 若從第行第列的數(shù)開始右讀,請(qǐng)你依次寫出最先抽出的 個(gè)人的編號(hào)(下面是摘自隨機(jī)用表的第四行至第七行)

(2)若數(shù)學(xué)優(yōu)秀率為,求的值;

(3)在語文成績(jī)?yōu)榱嫉膶W(xué)生中,已知,求數(shù)學(xué)成績(jī)優(yōu)的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城市有一直角梯形綠,其中,km,km.現(xiàn)過邊界點(diǎn)鋪設(shè)一條直的灌溉水管,將綠分成面積相等的兩部分.

(1)如圖,的中點(diǎn),邊界上,求灌溉水管的長(zhǎng)度;

(2)如圖邊界上,求灌溉水管的最短長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點(diǎn),且,求的值;

(2)若,是直線上的動(dòng)點(diǎn),過作圓的兩條切線,,切點(diǎn)分別為,,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案