【題目】已知曲線的方程為:(,為常數(shù)).
(Ⅰ)判斷曲線的形狀;
(Ⅱ)設直線與曲線交于不同的兩點、,且,求曲線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】某城市有一直角梯形綠地,其中,km,km.現(xiàn)過邊界上的點處鋪設一條直的灌溉水管,將綠地分成面積相等的兩部分.
(1)如圖①,若為的中點,在邊界上,求灌溉水管的長度;
(2)如圖②,若在邊界上,求灌溉水管的最短長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中用表示.
(1)若乙組同學投籃命中次數(shù)的平均數(shù)比甲組同學的平均數(shù)少1,求及乙組同學投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數(shù)之和為16的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,且,求的值;
(2)若,是直線上的動點,過作圓的兩條切線,,切點分別為,,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位每天的用電量(度)與當天最高氣溫(℃)之間具有線性相關關系,下表是該單位隨機統(tǒng)計4天的用電量與當天最高氣溫的數(shù)據(jù).
最高氣溫(℃) | 26 | 29 | 31 | 34 |
用電量 (度) | 22 | 26 | 34 | 38 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);
(Ⅱ)試預測某天最高氣溫為33℃時,該單位當天的用電量(精確到1度).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 為的中點.
(1)求證: 平面;
(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 以為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.
(1)求證:平面平面;
(2)求平面 與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.
(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);
(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.
(只需寫出結論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com