【題目】已知函數(shù)f(x)= 函數(shù)g(x)=2﹣f(x),若函數(shù)y=f(x)﹣g(x)恰有4個零點,則實數(shù)a的取值范圍是 .
【答案】(2,3]
【解析】解:由題意當(dāng)y=f(x)﹣g(x)=2[f(x)﹣1]=0 時,即方程f(x)=1 有4個解.
又由函數(shù)y=a﹣|x+1|與函數(shù)y=(x﹣a)2 的大致形狀可知,
直線y=1 與函數(shù)f(x)= 的左右兩支曲線都有兩個交點,
當(dāng)x≤1時,函數(shù)f(x)的最大值為a,則a>1,
同時在[﹣1,1]上f(x)=a﹣|x+1|的最小值為f(1)=a﹣2,
當(dāng)a>1時,在(1,a]上f(1)=(1﹣a)2 ,
要使y=f(x)﹣g(x)恰有4個零點,
則滿足 ,即 ,解得2<a≤3.
所以答案是:(2,3]
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(,是自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,當(dāng)時,求函數(shù)的最大值;
(3)若,且,比較:與.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右焦點為, ,右頂點為,上頂點為,若, 與軸垂直,且.
(1)求橢圓的方程;
(2)過點且不垂直與坐標(biāo)軸的直線與橢圓交于, 兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,已知但在橢圓上.
(1)求橢圓的方程;
(2)過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點,使得成立?如果存在,求出的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù),若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,則實數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)當(dāng)a>0時,解關(guān)于x的不等式f(x)<0;
(2)若當(dāng)a>0時,f(x)<0在x [1,2]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),且f(x)=x有唯一解,,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a的值;
(2)求數(shù)列{xn}的通項公式;
(3)若,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項為1,公比為的等比數(shù)列,記cn=anbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)和時,取得極值.
(1)求的值;
(2)若函數(shù)的極大值大于20,極小值小于5,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com