【題目】已知函數(shù),當(dāng)和時(shí),取得極值.
(1)求的值;
(2)若函數(shù)的極大值大于20,極小值小于5,試求的取值范圍.
【答案】(1) b=3,c=-9 (2) (-7,10)
【解析】【試題分析】(1)求出函數(shù)的導(dǎo)數(shù),利用列方程組,求得的值.(2)由(1)求得函數(shù)的表達(dá)式,利用函數(shù)的導(dǎo)數(shù)求得當(dāng)時(shí)有極大值,當(dāng)時(shí)有極小值,根據(jù)題目要求極大值大于和極小值小于列不等式,可求得的取值范圍.
【試題解析】
(1)f′(x)=3x2+2bx+c,∵當(dāng)x=-3和x=1時(shí),f(x)取得極值,
∴f′(-3)=0,f′(1)=0.
∴解得b=3,c=-9.
(2)由(1)知:f(x)=x3+3x2-9x+d, f′(x)=3x2+6x-9,
令f′(x)>0,得3x2+6x-9>0,解得x<-3,或x>1,
∴當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
∵函數(shù)f(x)的極大值大于20,極小值小于5,
∴解得-7<d<10.
∴d的取值范圍是(-7,10).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 函數(shù)g(x)=2﹣f(x),若函數(shù)y=f(x)﹣g(x)恰有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 = +μ (1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則4a+b的最小值為 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣ae2x(a∈R)
(I)當(dāng)a≥ 時(shí),求證:f(x)≤0.
(II)若函數(shù)f(x)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活.—媒體為調(diào)查市民對(duì)低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中隨機(jī)抽取名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的頻率分布表和頻率分布直方圖如圖:
(1)求出表中的值,并補(bǔ)全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進(jìn)行問(wèn)卷調(diào)查, 再?gòu)倪@6名市民中隨機(jī)抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn , b1= 且3Sn=Sn﹣1+2(n≥2,n∈N).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn為數(shù)列{cn}的前n項(xiàng)和,Tn<m對(duì)n∈N*恒成立,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,設(shè).
(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;
(2)在中,分別為內(nèi)角的對(duì)邊,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若a1=1,an+1=3Sn(n≥1),則a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com