【題目】已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求的值;

(2)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的,.當(dāng)時(shí),問是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說明理由.

(3)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱直線與曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

【答案】(1),;(2)答案見解析;(3)證明見解析.

【解析】

(1)由題意可得,據(jù)此可得的值,然后驗(yàn)證所得的結(jié)果滿足題意即可;(2)首先由函數(shù)的單調(diào)性確定的值,然后求得函數(shù)的最大值和最小值,結(jié)合恒成立的條件即可確定的值; (3)由題意首先證得直線與曲線相切且至少有兩個(gè)切點(diǎn),然后令,易證明,據(jù)此即可證明直線是曲線上夾線”.

(1)由已知,于是得:,

代入可得:,.

此時(shí),.所以.

當(dāng)時(shí),;當(dāng)時(shí),.

所以當(dāng)時(shí),取得極小值,即符合題意.

(2),則.所以單調(diào)遞增,又.

的根,即,也即.

,.

,

所以存在這樣最小正整數(shù)使得恒成立.

(3),得 ,

當(dāng)時(shí),.

此時(shí),

所以是直線與曲線的一個(gè)切點(diǎn),

當(dāng),此時(shí),.

所以也是直線與曲線的一個(gè)切點(diǎn),

即直線與曲線相切且至少有兩個(gè)切點(diǎn),

對(duì)任意.

,因此直線是曲線上夾線”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有一特色酒店由一些完全相同的帳篷構(gòu)成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為(單位:米)的半球體,下層是半徑為米,高為米的圓柱體(如圖).經(jīng)測算,上層半球體部分每平方米建造費(fèi)用為2千元,下方圓柱體的側(cè)面、隔層和地面三個(gè)部分平均每平方米建造費(fèi)用為3千元,設(shè)每座帳篷的建造費(fèi)用為千元.

參考公式:球的體積,球的表面積,其中為球的半徑.

1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

2)當(dāng)半徑為何值時(shí),每座帳篷的建造費(fèi)用最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 下列結(jié)論錯(cuò)誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“ ”的否定是“,

D. 若“”為假命題,則均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知

1)求橢圓的離心率;

2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, ,且的中點(diǎn),.

(1)求證:

(2)求證:平面平面;

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)滿足,記點(diǎn)的軌跡為.斜率為的直線過點(diǎn),且與軌跡相交于兩點(diǎn).

1)求軌跡的方程;

2)求斜率的取值范圍;

3)在軸上是否存在定點(diǎn),使得無論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且.

(Ⅰ)求證:∥平面

(Ⅱ)求二面角的大。

(Ⅲ)已知點(diǎn)在棱上,且異面直線所成角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)求證:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊答案