【題目】已知單調遞增的等比數(shù)列滿足,且是的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(Ⅰ)通過是的等差中項可知,結合,可知 ,進而通過解方程,可知公比,從而可得數(shù)列的通項公式;(Ⅱ)通過(Ⅰ) ,利用錯位相減法求得,對任意正整數(shù)恒成立等價于對任意正整數(shù)恒成立,問題轉化為求的最小值,從而可得的取值范圍.
試題解析:(Ⅰ)設等比數(shù)列的首項為,公比為依題意,有,
代入,得,因此,
即有解得或
又數(shù)列單調遞增,則故.
(Ⅱ) ①
②
①-②,得
對任意正整數(shù)恒成立.
對任意正整數(shù)恒成立,即恒成立,
,即的取值范圍是.
【易錯點晴】本題主要考查等差數(shù)列的通項公式以及求和公式、“錯位相減法”求數(shù)列的和,以及不等式恒成立問題,屬于難題. “錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項 的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓
(1)若圓、相交,求的取值范圍;
(2)若圓與直線相交于、兩點,且,求的值;
(3)已知點,圓上一點,圓上一點,求的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產一種產品,質量測試分為:指標不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元.現(xiàn)對學徒工甲和正式工人乙生產的產品各100件的檢測結果統(tǒng)計如下:
根據(jù)上表統(tǒng)計得到甲、乙生產產品等級的頻率分別估計為他們生產產品等級的概率.
(Ⅰ)求出甲生產三等品的概率;
(Ⅱ)求出乙生產一件產品,盈利不小于30元的概率;
(Ⅲ)若甲、乙一天生產產品分別為30件和40件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對稱中心;
(2)若關于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,其離心率,點P為橢圓上的一個動點,面積的最大值為.
(1)求橢圓的標準方程;
(2)若A,B,C,D是橢圓上不重合的四個點,AC與BD相交于點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是非零實常數(shù))滿足,且關于的方程的解集中恰有一個元素.
(1)求的值;
(2)在直角坐標系中,求定點到函數(shù)圖像上任意一點的距離的最小值;
(3)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AC,PA⊥AB,PA=AB,,,點D,E分別在棱PB,PC上,且DE∥BC,
(1)求證:BC⊥平面PAC;
(2)當D為PB的中點時,求AD與平面PAC所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com