已知a、b、c成等差數(shù)列,則直線被曲線截得的弦長的最小值為
A.B.C.D.2
D

分析:利用等差數(shù)列的定義得到2b=a+c,求出圓心坐標及半徑,求出圓心到直線的距離d,利用勾股定理求出弦長,求出最小值.
解:因為a,b,c成等差數(shù)列,
所以2b=a+c.
因為x2+y2-2x-2y=0表示以(1,1)為圓心,以為半徑的圓,
則圓心到直線的距離為d==
則直線ax-by+c=0被曲線x2+y2-2x-2y=0截得的弦長,
l=2=2≥2,
當且僅當a=0,且b≠0時,取等號.
所以0截得的弦長的最小值為2,
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩個等比數(shù)列,滿足.
(1)若=1,求數(shù)列的通項公式;
(2)若數(shù)列唯一,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知數(shù)列中,且點在直線上.
(1)求數(shù)列的通項公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設表示數(shù)列的前n項和.試問:是否存在關于的整式,使得對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足=4n-3(n).
(1)若數(shù)列是等差數(shù)列,求的值;
(2)當=2時,求數(shù)列的前n項和;
(3)若對任意n,都有≥5成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分12分)
已知數(shù)列{ },其前n項和Sn滿足Sn+1=2Sn+1(是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列{an}的通項公式;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等比數(shù)列中,公比 有(  )
A.最小值-4B.最大值-4C.最小值12 D.最大值12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分13分)
已知等比數(shù)列{an}的公比q=3,前3項和S3=。
(I)求數(shù)列{an}的通項公式;
(II)若函數(shù)處取得最大值,且最大值為a3,求函數(shù)f(x)的解析式。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有純酒精,從中取出1,再用水加滿;然后再取出1,再用水加滿,如此反復進行,則第九次取出      酒精.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

數(shù)列通項公式是,是數(shù)列的前項和,則等于(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案