【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.
(注:將頻率視為概率)
【答案】(Ⅰ)x=15,y=20.
X | 1 | 1.5 | 2 | 2.5 | 3 |
P |
E(X)=1.9;(Ⅱ)
【解析】試題分析:(Ⅰ)根據(jù)總?cè)藬?shù)有100人,則,由100位顧客中一次購物量超過8件的顧客占55%,則知.根據(jù)這兩式得x=15,y=20,由表格可得X的可以取值為:1,1.5,2,2.5,3;該超市所有顧客一次購物的結(jié)算時間組成一個總體,所收集的100位顧客一次購物的結(jié)算時間可視為總體的一個容量為100的簡單隨機(jī)樣本,將頻率視為概率,即可得到分布列與期望.
(Ⅱ)由于該客到達(dá)收銀臺時前面恰有2位顧客需結(jié)算,則該顧客結(jié)算前的等候時間不超過2.5分鐘的情況為(1、1),(1、1.5),(1.5、1)三種情況,則按照各顧客的結(jié)算相互獨(dú)立,有
P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)
=×+×+×=.
試題解析:(Ⅰ)由已知,得25+y+10=55,x+30=45,所以x=15,y=20.
該超市所有顧客一次購物的結(jié)算時間組成一個總體,所收集的100位顧客一次購物的結(jié)算時間可視為總體的一個容量為100的簡單隨機(jī)樣本,將頻率視為概率得
P(X=1)==,P(X=1.5)==,P(X=2)==,
P(X=2.5)==,P(X=3)==.
X的分布列為
X | 1 | 1.5 | 2 | 2.5 | 3 |
P |
X的數(shù)學(xué)期望為
E(X)=1×+1.5×+2×+2.5×+3×=1.9.
(Ⅱ)記A為事件“該顧客結(jié)算前的等候時間不超過2.5分鐘”,Xi(i=1,2)為該顧客前面第i位顧客的結(jié)算時間,則
P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).
由于各顧客的結(jié)算相互獨(dú)立,且X1,X2的分布列都與X的分布列相同,所以
P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)
=×+×+×=.
故該顧客結(jié)算前的等候時間不超過2.5分鐘的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:ax﹣y+1=0與x軸,y軸分別交于點(diǎn)A,B.
(1)若a>0,點(diǎn)M(1,﹣1),點(diǎn)N(1,4),且以MN為直徑的圓過點(diǎn)A,求以AN為直徑的圓的方程;
(2)以線段AB為邊在第一象限作等邊三角形ABC,若a=﹣ ,且點(diǎn)P(m, )(m>0)滿足△ABC與△ABP的面積相等,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是( )
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點(diǎn)P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA|=|PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若 且a2=bc,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)兩相鄰的零點(diǎn)之間的距離為 ,將f(x)的圖象向左平移 個單位后圖象對應(yīng)的函數(shù)g(x)是偶函數(shù). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對稱軸及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)P是E上一點(diǎn), , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線上,A、B在橢圓E上,若矩形ABCD的周長為 , 求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計使用年限為10年時,維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , , 是中點(diǎn).
(I)求證:直線平面.
(II)求證:直線平面.
(III)在上是否存在一點(diǎn),使得二面角的大小為,若存在,確定的位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com