【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)兩相鄰的零點(diǎn)之間的距離為 ,將f(x)的圖象向左平移 個(gè)單位后圖象對應(yīng)的函數(shù)g(x)是偶函數(shù). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對稱軸及單調(diào)遞增區(qū)間.
【答案】解:(Ⅰ)∵f (x)兩相鄰的零點(diǎn)之間的距離為 , ∴ = ,即 = ,故ω=2
∴g(x)=sin[2(x+ )+φ]=sin(2x+ +φ)
∵g (x)是偶函數(shù),且0<φ<π,
∴ +φ= ,∴φ=
∴f(x)=sin(2x+ )
(Ⅱ)對稱軸為x= +
由2kπ﹣ ≤2x+ ≤2kπ+ 得:kπ﹣ ≤x≤kπ+
∴函數(shù)的單調(diào)遞增區(qū)間是[kπ﹣ ,kπ+ ](k∈Z)
【解析】(Ⅰ)利用f (x)兩相鄰的零點(diǎn)之間的距離為 ,求出ω,將f(x)的圖象向左平移 個(gè)單位后圖象對應(yīng)的函數(shù)g(x)是偶函數(shù),求出φ,即可求函數(shù)f(x)的解析式;(Ⅱ)利用正弦函數(shù)的性質(zhì),即可求函數(shù)f(x)的對稱軸及單調(diào)遞增區(qū)間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1的各個(gè)頂點(diǎn)與各棱的中點(diǎn)共20個(gè)點(diǎn)中,任取2點(diǎn)連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+3,g(x)=m(x﹣1)+2(m>0),若存在x1∈[0,3],使得對任意的x2∈[0,3],都有f(x1)=g(x2),則實(shí)數(shù)m的取值范圍是( )
A.
B.(0,3]
C.
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時(shí)間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線f(x)= (x>0)上有一點(diǎn)列Pn(xn , yn)(n∈N*),過點(diǎn)Pn在x軸上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)四邊形PnQnQn+1Pn+1的面積是Sn , 求Sn;
(3)在(2)條件下,求證: + +…+ <4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:mm)進(jìn)行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(I)若A,B兩點(diǎn)的縱會標(biāo)分別為 的值;
(II)已知點(diǎn)C是單位圓上的一點(diǎn),且 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí)有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集為( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com