(本小題滿分14分)已知四棱錐P—ABCD的三視圖如右圖所示,
其中正(主)視圖與側(cè)(左)視為直角三角形,俯視圖為正方形。
(1)求四棱錐P—ABCD的體積;
(2)若E是側(cè)棱上的動(dòng)點(diǎn)。問:不論點(diǎn)E在PA的
任何位置上,是否都有?
請證明你的結(jié)論?
(3)求二面角D—PA—B的余弦值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求證:頂點(diǎn)A1在底面ABCD上的射影O在∠BAD的平分線上;
(2)求這個(gè)平行六面體的體積。
圖1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)D垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900。
(1)求證:BE//平面ADF;
(2)若矩形ABCD的一個(gè)邊AB="3," 另一邊BC=2,EF=2,求幾何體ABCDEF的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共13分)
如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=
∠BAD=90°,為AB中點(diǎn),F為PC中點(diǎn).
(I)求證:PE⊥BC;
(II)求二面角C—PE—A的余弦值;
(III)若四棱錐P—ABCD的體積為4,求AF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P—ABCD的底面為矩形,PA=AD=1,PA⊥面ABCD,E是AB的中點(diǎn),F(xiàn)為PC上一點(diǎn),且EF//面PAD。
(I)證明:F為PC的中點(diǎn);
(II)若二面角C—PD—E的平面角的余弦值為求直線ED與平面PCD所成的角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,求這個(gè)多面體最長的一條棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,有下列四個(gè)命題:
①若m?β,α⊥β,則m⊥α;②若α∥β,m?α,則m∥β;③若n⊥α,n⊥β,m⊥α,則m⊥β;④若α⊥γ,β⊥γ,m⊥α,則m⊥β.
其中正確命題的序號是( )
A.①③ | B.①② | C.③④ | D.②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com