【題目】已知函數(shù)f(x)=x++2(m為實常數(shù)).
(1)若函數(shù)f(x)圖象上動點P到定點Q(0,2)的距離的最小值為,求實數(shù)m的值;
(2)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調性的定義求實數(shù)m的取值范圍;
(3)設m<0,若不等式f(x)≤kx在x∈[,1]時有解,求k的取值范圍.
【答案】(1) 或;(2)(-∞,4];(3)答案見解析.
【解析】試題分析:
(1)設P(x,y),結合兩點之間距離公式有: ,求解關于實數(shù)的方程可得或;
(2)由題意知,任取x1,x2∈[2,+∞),且x1<x2,有f(x2)-f(x1)=(x2-x1)·>0.則m<x1x2.據(jù)此可得m的取值范圍是(-∞,4].
(3)由f(x)≤kx分離參數(shù)可得: 在上能成立,換元令,結合二次函數(shù)的性質可得:
當時,k∈[4m+5,+∞);
當時,k∈[m+3,+∞).
試題解析:
(1)設P(x,y),則y=x++2,
PQ2=x2+(y-2)2=x2+(x+)2
=2x2++2m≥2|m|+2m=2,
當m>0時,解得m=-1;
當m<0時,解得m=--1.
所以m=-1或m=--1.
(2)由題意知,任取x1,x2∈[2,+∞),且x1<x2,
則f(x2)-f(x1)=x2++2-(x1++2)=(x2-x1)·>0.
因為x2-x1>0,x1x2>0,
所以x1x2-m>0,即m<x1x2.
由x2>x1≥2,得x1x2>4,所以m≤4.
所以m的取值范圍是(-∞,4].
(3)由f(x)≤kx,得x++2≤kx.
因為x∈[,1],所以k≥++1.
令t=,則t∈[1,2],
所以k≥mt2+2t+1.
令g(t)=mt2+2t+1,t∈[1,2],
于是,要使原不等式在x∈[,1]時有解,當且僅當k≥[g(t)]min(t∈[1,2]).
因為m<0,
所以g(t)=m(t+)2+1-的圖象開口向下,
對稱軸為直線t=->0.
因為t∈[1,2],所以當0<-≤,
即m≤-時,g(t)min=g(2)=4m+5;
當->,即-<m<0時,
g(t)min=g(1)=m+3.
綜上,當m≤-時,k∈[4m+5,+∞);
當-<m<0時,k∈[m+3,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=a-2ln x(a∈R).
(Ⅰ)當a=2時,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若a>,且m,n分別為f(x)的極大值和極小值,S=m-n,求證:S<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856288)
設函數(shù)f(x)=aln x-x,g(x)=aex-x,其中a為正實數(shù).
(Ⅰ)若f(x)在(1,+∞)上是單調減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)都沒有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是一種分時租賃模式,某共享單車企業(yè)為更好服務社會,隨機調查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|.
(l)求f(x)≥1的解集;
(2)若對任意的t∈R,s∈R,都有g(s)≥f(t).求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856295)德國大數(shù)學家高斯年少成名,被譽為數(shù)學王子.19歲的高斯得到了一個數(shù)學史上非常重要的結論,就是《正十七邊形尺規(guī)作圖之理論與方法》, 在其年幼時,對1+2+3+…+100的求和運算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也被稱為高斯算法.現(xiàn)有函數(shù)f(x)=,則f(1)+f(2)+…+f(m+2017)等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,若f(x)≥2ln x在[1,+∞)上恒成立,則a的取值范圍是( )
A. (1,+∞) B. [1,+∞)
C. (2,+∞) D. [2,+∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com