【題目】如圖,已知在長(zhǎng)方體中,,點(diǎn)上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:

①四棱錐的體積為

②存在唯一的點(diǎn),使截面四邊形的周長(zhǎng)取得最小值;

③當(dāng)點(diǎn)不與重合時(shí),在棱上均存在點(diǎn),使得平面

④存在唯一一點(diǎn),使得平面,且

其中正確的命題是_____________(填寫(xiě)所有正確的序號(hào))

【答案】①②④

【解析】

①根據(jù),再根據(jù)等體積轉(zhuǎn)化,求出,得到答案;②判斷出截面四邊形為平行四邊形,將正方體側(cè)面展開(kāi),面和面在同一平面內(nèi),得到最小為內(nèi)的長(zhǎng)度,從而得到截面四邊形的周長(zhǎng)的最小值;③取中點(diǎn)時(shí),在平面中,延長(zhǎng),交,可得;④以點(diǎn)建立空間直角坐標(biāo)系,根據(jù)線(xiàn)面垂直,得到點(diǎn)坐標(biāo),并求出.

長(zhǎng)方體中,

命題①,

易知平面

到平面的距離,等于到平面的距離,為,

同理到平面的距離,等于到平面的距離,為

所以

,故正確.

命題②,易知平面平面,

平面平面,平面平面

所以,同理

即四邊形為平行四邊形

將正方體側(cè)面展開(kāi),面和面在同一平面內(nèi),

可得在內(nèi),最小為的長(zhǎng)度,

此時(shí)點(diǎn)為的交點(diǎn),

所以四邊形的周長(zhǎng)取得最小值,故正確.

命題③,取中點(diǎn)時(shí),易知中點(diǎn)

在平面中,延長(zhǎng),交,

通過(guò),得到,

所以

即此時(shí)平面

而此時(shí)點(diǎn)延長(zhǎng)線(xiàn)上,不在棱上,故錯(cuò)誤.

命題④,以點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn)

,

所以,即,

要使平面,

則需,即

所以,得,即,故正確.

故答案為:①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英國(guó)統(tǒng)計(jì)學(xué)家EH.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

法官甲

法官乙

終審結(jié)果

民事庭

行政庭

合計(jì)

終審結(jié)果

民事庭

行政庭

合計(jì)

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計(jì)

32

118

150

合計(jì)

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,則下面說(shuō)法正確的是

A. ,B. ,

C. ,,D. ,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條公共汽車(chē)線(xiàn)路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車(chē)票收入-支出費(fèi)用),由于目前本條線(xiàn)路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車(chē)票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車(chē)票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線(xiàn)和虛線(xiàn)分別表示目前和建議后的函數(shù)關(guān)系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前項(xiàng)和為且滿(mǎn)足,為常數(shù),).

1)求;

2)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;

3)是否存在實(shí)數(shù),使得數(shù)列滿(mǎn)足:可以從中取出無(wú)限多項(xiàng)并按原來(lái)的先后次序排成一個(gè)等差數(shù)列?若存在,求出所有滿(mǎn)足條件的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項(xiàng)惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門(mén)對(duì)已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問(wèn)卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:

組別

頻數(shù)

10

390

400

188

12

求所得樣本的中位數(shù)精確到百元;

根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬(wàn)人,試估計(jì)有多少市民每年旅游費(fèi)用支出在7500元以上;

若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會(huì)繼續(xù)來(lái)該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來(lái)該景點(diǎn)游玩記2分,不來(lái)該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),圖象的一個(gè)對(duì)稱(chēng)中心,圖象的一條對(duì)稱(chēng)軸,且上單調(diào),則符合條件的值之和為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),為其焦點(diǎn),為其準(zhǔn)線(xiàn),過(guò)任作一條直線(xiàn)交拋物線(xiàn)于兩點(diǎn),分別為上的射影,的中點(diǎn),給出下列命題:

1;(2;(3;

4的交點(diǎn)的軸上;(5交于原點(diǎn).

其中真命題的序號(hào)為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為信號(hào)源點(diǎn),、是三個(gè)居民區(qū),已知、都在的正東方向上,,,的北偏西45°方向上,,現(xiàn)要經(jīng)過(guò)點(diǎn)鋪設(shè)一條總光纜直線(xiàn)在直線(xiàn)的上方),并從、分別鋪設(shè)三條最短分支光纜連接到總光纜,假設(shè)鋪設(shè)每條分支光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為1/,設(shè),(),鋪設(shè)三條分支光纜的總費(fèi)用為(元).

1)求關(guān)于的函數(shù)表達(dá)式;

2)求的最小值及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪(fǎng),求這3名學(xué)生中至少有2名要挑同桌的概率;

根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案