【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;

根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時是否挑同桌”有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中

【答案】 見解析

【解析】試題分析:(Ⅰ)根據(jù)分層抽樣原理求出樣本中挑同桌有3人,不挑同桌有2人,利用列舉法求出基本事件數(shù),計(jì)算對應(yīng)的概率值;(Ⅱ)根據(jù)2×2列聯(lián)表計(jì)算觀測值,對照臨界值表得出結(jié)論.

解析:

根據(jù)分層抽樣方法抽取容量為5的樣本,挑同桌有3人,記為A、BC,

不挑同桌有2人,記為de;

從這5人中隨機(jī)選取3人,基本事件為

10種;

3名學(xué)生中至少有2名要挑同桌的事件為概率為

,共7種;

故所求的概率為;

根據(jù)以上列聯(lián)表,計(jì)算觀測值

,

對照臨界值表知,有以上的把握認(rèn)為“性別與在選擇座位時是否挑同桌”有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為

)求、

)設(shè),求的最大值.

)證明函數(shù)的圖像與直線沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究某種圖書每冊的成本費(fèi)(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中 .

(1)根據(jù)散點(diǎn)圖判斷: 哪一個更適宜作為每冊成本費(fèi)(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應(yīng)該印刷多少千冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?意思是:一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,在區(qū)間上存在三個不同的實(shí)數(shù),使得以為邊長的三角形是直角三角形,則的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠對這些產(chǎn)品進(jìn)行了安全和環(huán)保這兩個性能的質(zhì)量檢測。工廠決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測,現(xiàn)將700件產(chǎn)品按001,002,…,700進(jìn)行編號;

(1)如果從第8行第4列的數(shù)開始向右讀,請你依次寫出最先檢測的3件產(chǎn)品的編號;

(下面摘取了隨機(jī)數(shù)表的第7~9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100件產(chǎn)品的安全性能和環(huán)保性能的質(zhì)量檢測結(jié)果如下表:

檢測結(jié)果分為優(yōu)等、合格、不合格三個等級,橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為,求的值。

件數(shù)

環(huán)保性能

優(yōu)等

合格

不合格

安全性能

優(yōu)等

6

20

5

合格

10

18

6

不合格

4

(3)已知,,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案