【題目】設函數(shù).

(1)求函數(shù)的極值點個數(shù);

(2)若,證明 .

【答案】(1)2個(2)詳見解析

【解析】

(1)由是奇函數(shù),把問題轉化成的極值點個數(shù)問題,求出,把的正負問題轉化成正負來處理,求出,判斷的單調性,結合函數(shù)零點判斷方法即可判斷在區(qū)間上存在唯一的使.在上不存在使得,問題得解。

(2)利用(1)中的結論可知:在區(qū)間內恒成立.令,可將問題轉化成 ,問題得證。

解:(1)因為為奇函數(shù),其圖像關于原點對稱,所以只需考慮上的極值點個數(shù),

,時,

.

,

∴當時,,單調遞減,

時,,單調遞增,

.

,,

∴在區(qū)間上存在唯一的使.

在區(qū)間上單調遞減,在區(qū)間上單調遞增.

為奇函數(shù),

在區(qū)間上單調遞增,在區(qū)間上單調遞減,在區(qū)間上單調遞增,

的極值點共2個.

(2)由(1)可知在區(qū)間內單調遞減,且恒成立.

時,,

即得.

又令

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關關系.

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程

2)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.

參與公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象與直線ya恰有三個不同的交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自201911日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:

個人所得稅稅率表(調整前)

個人所得稅稅率表(調整后)

免征額3500

免征額5000

級數(shù)

全月應納稅所得額

稅率(%)

級數(shù)

全月應納稅所得額

稅率(%)

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數(shù)表達式;

(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表

收入(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;

(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.

安全意識強

安全意識不強

合計

男性

女性

合計

(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;

(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;

(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為且橢圓上存在一點,滿足.

(1)求橢圓的標準方程;

(2)已知分別是橢圓的左、右頂點,過的直線交橢圓兩點,記直線的交點為,是否存在一條定直線,使點恒在直線上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:

個人所得稅稅率表(調整前)

個人所得稅稅率表(調整后)

免征額3500元

免征額5000元

級數(shù)

全月應納稅所得額

稅率(%)

級數(shù)

全月應納稅所得額

稅率(%)

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數(shù)表達式;

(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表

收入(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),隨機變量,求的分布列與數(shù)學期望;

小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案