【題目】函數(shù)的圖象與直線y=a恰有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】.
【解析】
由題意得f′(x)=x2-4=(x+2)(x-2),得出函數(shù)f(x)的單調(diào)區(qū)間和極值,作出函數(shù)f(x)的大致圖象,根據(jù)函數(shù)圖象可得出答案.
∵f(x)=x3-4x+4,∴f′(x)=x2-4=(x+2)(x-2).
令f′(x)=0,得x=2或x=-2.當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,-2) | -2 | (-2,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
∴當(dāng)x=-2時(shí),函數(shù)取得極大值f(-2)=;
當(dāng)x=2時(shí),函數(shù)取得極小值f(2)=-
且f(x)在(-∞,-2)上單調(diào)遞增,在(-2,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增.
根據(jù)函數(shù)單調(diào)性、極值情況,它的圖象大致如圖所示,
結(jié)合圖象知
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)的導(dǎo)函數(shù)為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)是上的“雙中值函數(shù)“,則實(shí)數(shù)m的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近兩年來,以《中國詩詞大會(huì)》為代表的中國文化類電視節(jié)目帶動(dòng)了一股中國文化熱潮.某臺(tái)舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯(cuò)誤,立馬淘汰,若全部回答正確,就能獲得一枚復(fù)活幣并進(jìn)行下一輪答題,兩輪都通過就可以獲得最終獎(jiǎng)金.選手在第一輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會(huì)在下一輪答題中自動(dòng)使用,即下一輪重新進(jìn)行闖關(guān)答題時(shí),在某一類題型中回答錯(cuò)誤,自動(dòng)復(fù)活一次,視為答對(duì)該類題型.若某選手每輪的4類題型的通過率均分別為、、、,則該選手進(jìn)入第二輪答題的概率為_________;該選手最終獲得獎(jiǎng)金的概率為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教學(xué)研究室為了對(duì)今后所出試題的難度有更好的把握,提高命題質(zhì)量,對(duì)該市高三理科數(shù)學(xué)試卷的得分情況進(jìn)行了調(diào)研.從全市參加考試的理科考生中隨機(jī)抽取了100名考生的數(shù)學(xué)成績(滿分150分),將數(shù)據(jù)分成9組:,,,,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計(jì)的方法得到樣本標(biāo)準(zhǔn)差,以頻率值作為概率估計(jì)值.
(Ⅰ)根據(jù)頻率分布直方圖,求抽取的100名理科考生數(shù)學(xué)成績的平均分及眾數(shù);
(Ⅱ)用頻率估計(jì)概率,從該市所有高三理科考生的數(shù)學(xué)成績中隨機(jī)抽取3個(gè),記理科數(shù)學(xué)成績位于區(qū)間內(nèi)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)從該市高三理科數(shù)學(xué)考試成績中任意抽取一份,記其成績?yōu)?/span>,依據(jù)以下不等式評(píng)判(表示對(duì)應(yīng)事件的概率):
①,②,
③,其中.
評(píng)判規(guī)則:若至少滿足以上兩個(gè)不等式,則給予這套試卷好評(píng),否則差評(píng).試問:這套試卷得到好評(píng)還是差評(píng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,,.
(1)若為中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com