【題目】不等式組 的整數(shù)解的個數(shù)為( )
A.6
B.7
C.8
D.9

【答案】D
【解析】解: ,

解①得x<3,

解②得x≥﹣6.

則不等式組的解集是:﹣6≤x<3.

則整數(shù)解是﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.共有9個.

所以答案是:D.

【考點精析】解答此題的關(guān)鍵在于理解一元一次不等式組的解法的相關(guān)知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ),以及對一元一次不等式組的整數(shù)解的理解,了解使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖1,若,點外部,則有,又可證,得,將點移到內(nèi)部,如圖2,以上結(jié)論是否成立?若成立,說明理由;若不成立,則之間有何數(shù)量關(guān)系?請證明你的結(jié)論;

(2)在如圖2中,將直線繞點逆時針方向旋轉(zhuǎn)一定角度交直線于點如圖3,則之間有何數(shù)量關(guān)系? (不需證明);

(3)根據(jù)(2)的結(jié)論,求如圖4中的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線與直線交與點

軸上是否存在點P,使的面積是面積的二倍?若存在,直接寫出點P的坐標(biāo);若不存在,說明理由.

如圖2,若點Ex軸上的一個動點,點E的橫坐標(biāo)為,過點E作直線軸于點E,交直線于點F,交直線于點G,求m為何值時,?請說明理由.

的前提條件下,直線l上是否存在點Q,使的值最小?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)表中的信息判斷,下列語句中正確的是

( 。

A.1.59

B.235的算術(shù)平方根比15.3

C.只有3個正整數(shù)n滿足

D.根據(jù)表中數(shù)據(jù)的變化趨勢,可以推斷出16.12將比256增大3.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,點在射線上,

1)如圖 1,若,求的度數(shù);

2)把°”改為,射線 沿射線 平移,得到,其它條件不變(如 2 所示),探究 的數(shù)量關(guān)系;

3)在(2)的條件下,作,垂足為 ,與 的角平分線 交于點,若 , 用含 α 的式子表示(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,則BC的長為( )

A.
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖 1 所示,△ ABC △ AEF 為等邊三角形,點 E △ ABC 內(nèi)部,且 E 到點 A、BC 的距離分別為 3、4、5,求∠AEB 的度數(shù).

2)如圖 2,在△ ABC 中,∠CAB=90°AB=AC,M、N BC 上的兩點,且∠MAN=45°,MN2 NC2+BM2 有何關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c經(jīng)過A(﹣1,0),C(2,﹣3)兩點,與y軸交于點D,與x軸交于另一點B.

(1)求此拋物線的解析式及頂點坐標(biāo);
(2)若將此拋物線平移,使其頂點為點D,需如何平移?寫出平移后拋物線的解析式;
(3)過點P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點E,F(xiàn),交直線OC于點G,求證:PF=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你根據(jù)如圖所示的阿寶與仙鶴的對話,解答下列問題:

1)仙鶴為什么說多邊形內(nèi)角和的度數(shù)不可能是;

2)若圖中仙鶴所提到的外角的度數(shù)為,請分別求仙鶴所畫的多邊形的內(nèi)角和的度數(shù)與邊數(shù).

查看答案和解析>>

同步練習(xí)冊答案