【題目】如圖,直線、是緊靠某湖泊的兩條相互垂直的公路,曲線段是該湖泊環(huán)湖觀光大道的一部分.現(xiàn)準(zhǔn)備修建一條直線型公路,用以連接兩條公路和環(huán)湖觀光大道,且直線與曲線段有且僅有一個(gè)公共點(diǎn).已知點(diǎn)到、的距離分別為和,點(diǎn)到的距離為,點(diǎn)到的距離為.若分別以、為軸、軸建立平面直角坐標(biāo)系,則曲線段對(duì)應(yīng)的函數(shù)解析式為.
(1)求的值,并指出函數(shù)的自變量的取值范圍;
(2)求直線的解析式,并求出公路的長(zhǎng)度(結(jié)果保留根號(hào)).
【答案】(1),自變量的取值范圍為;(2),公路的長(zhǎng)度為.
【解析】
(1)先確定點(diǎn)C的坐標(biāo)為(1,8),將其代入即可求出k=8,進(jìn)而確定自變量的取值范圍;
(2)設(shè)直線AB的解析式為y=kx+b(k≠0),將點(diǎn)P(2,4)代入得4=2k+b,即b=4-2k,則直線AB的解析式為y=kx+4-2k,根據(jù)直線AB與曲線段CD有且僅有一個(gè)公共點(diǎn)P,求出k=-2,那么直線AB的解析式為y=-2x+8,再分別求出A、B的坐標(biāo),進(jìn)而得到AB的長(zhǎng)度.
解:(1)由題意得:點(diǎn)的坐標(biāo)為,將其代入得:,
曲線段的函數(shù)解析式為,
點(diǎn)的坐標(biāo)為
∴自變量的取值范圍為;
(2)設(shè)直線的解析式為,
由(1)易求得點(diǎn)的坐標(biāo)為,
,即,
直線的解析式為,
聯(lián)立,得,
,
由題意得:,解得,
直線的解析式為,當(dāng)時(shí),;當(dāng)時(shí),,
即、的坐標(biāo)分別為,,
.
公路的長(zhǎng)度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店計(jì)劃進(jìn)A,B兩種水果共140千克,這兩種水果的進(jìn)價(jià)和售價(jià)如表所示
進(jìn)價(jià)元千克 | 售價(jià)元千克 | |
A種水果 | 5 | 8 |
B種水果 | 9 | 13 |
若該水果店購(gòu)進(jìn)這兩種水果共花費(fèi)1020元,求該水果店分別購(gòu)進(jìn)A,B兩種水果各多少千克?
在的基礎(chǔ)上,為了迎接春節(jié)的來(lái)臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價(jià)出售,那么售完后共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行團(tuán)32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團(tuán)中成人與少年分別是多少人?
(2)因時(shí)間充裕,該團(tuán)準(zhǔn)備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門(mén)票價(jià)格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費(fèi)攜帶一名兒童.
①若由成人8人和少年5人帶隊(duì),則所需門(mén)票的總費(fèi)用是多少元?
②若剩余經(jīng)費(fèi)只有1200元可用于購(gòu)票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊(duì)?求所有滿足條件的方案,并指出哪種方案購(gòu)票費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料:解形如(x+a)4+(x+b)4=c的一元四次方程時(shí),可以先求常數(shù)a和b的均值,然后設(shè)y=x+.再把原方程換元求解,用種方法可以成功地消去含未知數(shù)的奇次項(xiàng),使方程轉(zhuǎn)化成易于求解的雙二次方程,這種方法叫做“均值換元法.
例:解方程:(x﹣2)4+(x﹣3)4=1
解:因?yàn)椹?/span>2和﹣3的均值為,所以,設(shè)y=x﹣,原方程可化為(y+)4+(y﹣)4=1,
去括號(hào),得:(y2+y+)2+(y2﹣y+)2=1
y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1
整理,得:2y4+3y2﹣ =0(成功地消去了未知數(shù)的奇次項(xiàng))
解得:y2=或y2=(舍去)
所以y=±,即x﹣=±.所以x=3或x=2.
(1)用閱讀材料中這種方法解關(guān)于x的方程(x+3)4+(x+5)4=1130時(shí),先求兩個(gè)常數(shù)的均值為______.
設(shè)y=x+____.原方程轉(zhuǎn)化為:(y﹣_____)4+(y+_____)4=1130.
(2)用這種方法解方程(x+1)4+(x+3)4=706
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),現(xiàn)將拋物線沿軸翻折,并向左平移1個(gè)單位長(zhǎng)度后得到物線.
(1)求拋物線的解析式.
(2)若拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)右側(cè)),點(diǎn)在拋物線對(duì)稱軸上一點(diǎn),為坐標(biāo)原點(diǎn),則拋物線上是否存在點(diǎn),使以,,,為頂點(diǎn)的四邊形是干行四邊形?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的分式方程無(wú)解,關(guān)于y的不等式組的整數(shù)解之和恰好為10,則符合條件的所有m的和為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸相交于點(diǎn)A、點(diǎn)B,與y軸交于點(diǎn)C(0,3),對(duì)稱軸為直線x=1,交x軸于點(diǎn)D,頂點(diǎn)為點(diǎn)E.
(1)求該拋物線的解析式;
(2)連接AC,CE,AE,求△ACE的面積;
(3)如圖2,點(diǎn)F在y軸上,且OF=,點(diǎn)N是拋物線在第一象限內(nèi)一動(dòng)點(diǎn),且在拋物線對(duì)稱軸右側(cè),連接ON交對(duì)稱軸于點(diǎn)G,連接GF,若GF平分∠OGE,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一段拋物線:記為,它與軸交于兩點(diǎn),;將繞旋轉(zhuǎn)180°得到,交軸于;將繞旋轉(zhuǎn)180°得到,交軸于如此變換進(jìn)行下去,若點(diǎn)在這種連續(xù)變換的圖象上,則的值為( )
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為全面推進(jìn)“三供一業(yè)”分離移交工作,甲、乙兩個(gè)工程隊(duì)承攬了某社區(qū)2400米的電路管道鋪設(shè)工程.已知甲隊(duì)每天鋪設(shè)管道的長(zhǎng)度是乙隊(duì)每天鋪設(shè)管道長(zhǎng)度的1.5倍,若兩隊(duì)各自獨(dú)立完成1200米的鋪設(shè)任務(wù),則甲隊(duì)比乙隊(duì)少用10天.
(1)求甲、乙兩工程隊(duì)每天分別鋪設(shè)電路管道多少米;
(2)若甲隊(duì)參與該項(xiàng)工程的施工時(shí)間不得超過(guò)20天,則乙隊(duì)至少施工多少天才能完成該項(xiàng)工程?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com