【題目】為了了解成都市初中學(xué)生數(shù)學(xué)核心素養(yǎng)的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85100;第二組100115;第三組 115130;第四組 130145;第五組 145160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:

(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績(jī)?yōu)榈谖褰M的有多少名學(xué)生?

(2)針對(duì)考試成績(jī)情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來(lái)的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名同學(xué)剛好來(lái)自第一、五組的概率.

【答案】(1)本次調(diào)查的學(xué)生總數(shù)為50(名),成績(jī)?cè)诘?/span>5組的學(xué)生人數(shù)為4(人);

2)所選兩名同學(xué)剛好來(lái)自第一、五組的概率為

【解析】試題分析:1)首先根據(jù)題意得:本次調(diào)查共隨機(jī)抽取了該年級(jí)學(xué)生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50-4-8-20-14=4(名);即可補(bǔ)全統(tǒng)計(jì)圖;

2)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與所選兩名同學(xué)剛好來(lái)自第一、五組的情況,再利用概率公式求解即可求得答案.

解:(1)本次調(diào)查的學(xué)生總數(shù)為20÷40%=50(名),成績(jī)?cè)诘?/span>5組的學(xué)生人數(shù)為50﹣(4+8+20+14)=4(人);

(2)畫(huà)樹(shù)狀圖如下:

由樹(shù)狀圖知,共有20種等可能結(jié)果,其中所選兩名同學(xué)剛好來(lái)自第一、五組的情況有2種結(jié)果,

所以所選兩名同學(xué)剛好來(lái)自第一、五組的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
23

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售某品牌的羽毛球拍和乒乓球拍,羽毛球拍每副定價(jià)元,乒乓球拍每副定價(jià)元.店慶期間該超市開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)期間向顧客提供兩種優(yōu)惠方案.

方案一:買(mǎi)一副羽毛球拍送一副乒乓球拍;

方案二:羽毛球拍和乒乓球拍都按定價(jià)的付款.

現(xiàn)某校要到該超市購(gòu)買(mǎi)羽毛球拍副,乒乓球拍副(

1)若該校按方案一購(gòu)買(mǎi),需付款____元;(用含的代數(shù)式表示),若該校按方案二購(gòu)買(mǎi),需付款_____元.(用含的代數(shù)式表示)

2)當(dāng)取何值時(shí),兩種方案一樣優(yōu)惠?

3)當(dāng)時(shí),通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方法嗎?請(qǐng)寫(xiě)出你的購(gòu)買(mǎi)方法,并計(jì)算需付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】安岳是有名的“檸檬之鄉(xiāng)”,某超市用3000元進(jìn)了一批檸檬銷(xiāo)售良好;又用7700元購(gòu)來(lái)一批檸檬,但這次的進(jìn)價(jià)比第一批高了10%,購(gòu)進(jìn)數(shù)量是第一批的2倍多500斤.

1)第一批檸檬的進(jìn)價(jià)是每斤多少元?

2)為獲得更高利潤(rùn),超市決定將第二批檸檬分成大果子和小果子分別包裝出售,大果子的售價(jià)是第一批檸檬進(jìn)價(jià)的2倍,小果子的售價(jià)是第一批檸檬進(jìn)價(jià)的1.2倍.問(wèn)大果子至少要多少斤才能使第二批檸檬的利潤(rùn)不低于3080元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,直線l經(jīng)過(guò)頂點(diǎn)C,過(guò)A,B兩點(diǎn)分別作l的垂線AEBF,垂足分別為EF

1)如圖所示,當(dāng)直線l不與底邊AB相交時(shí),求證:

2)當(dāng)直線l繞點(diǎn)C旋轉(zhuǎn)到圖(b)的位置時(shí),猜想EF、AEBF之間的關(guān)系,并證明.

3)當(dāng)直線l繞點(diǎn)C旋轉(zhuǎn)到圖(c)的位置時(shí),猜想EFAE、BF之間的關(guān)系,直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形OABC,點(diǎn)Cx軸上,直線y=x經(jīng)過(guò)點(diǎn)A,菱形OABC的邊長(zhǎng)是,若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=4,BC=6,動(dòng)點(diǎn)P為矩形邊上的一點(diǎn),點(diǎn)P沿著B﹣C的路徑運(yùn)動(dòng)(含點(diǎn)B和點(diǎn)C),則ADP的外接圓的圓心O的運(yùn)動(dòng)路徑長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.ACBC兩邊垂直平分線的交點(diǎn)處

C.AC、BC兩邊高線的交點(diǎn)處

D.AC、BC兩邊中線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )

A. 2 B. 8 C. 2 D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案