【題目】某學(xué)校為了了解本校學(xué)生采用何種方式上網(wǎng)查找所需要的學(xué)習(xí)資源,隨機抽取部分學(xué)生了解情況,并將統(tǒng)計結(jié)果繪制成頻數(shù)分布表及頻數(shù)分布直方圖.

1)頻數(shù)分布表中的值:_____________,______________;

2)補全頻數(shù)分布直方圖;

3)若全校有1000名學(xué)生,估計該校利用搜索引擎上網(wǎng)查找學(xué)習(xí)資源的學(xué)生有多少名?

【答案】1,5;(2)作圖見解析;(3

【解析】

1)由頻數(shù)分布表可以求得ab的值;
2)根據(jù)b的值即可畫出直方圖;
3)用樣本估計總體的思想,即可解決問題.

1)抽取的學(xué)生數(shù)為:

,,

故答案為5;

2)由(1)得“其他”的人數(shù)為5人,

故頻數(shù)分布直方圖,如圖所示:

3(名)

答:該校利用搜索引擎查找學(xué)習(xí)資源的學(xué)生有320名.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y ax2 - 2ax 3a x 軸正半軸于點 A,負半軸于點 B,交 y 軸于點CtanOBC=3

(1) a 值;

(2) P 為第一象限拋物線上一點,連接 AC、PA、PC,若點 P 的橫坐標為 t PAC 的面積為S,求 St的函數(shù)解析式,(請直接寫出自變量 t 的取值范圍);

(3)在(2)的條件下,過點 P PDy 軸交 CA 延長線于點 D,連接 PB,交 y 軸于點 E,點 Q 為第二象限拋物線上一點,連接 QE 并延長分別交 x 軸、拋物線于點 N、F,連接 FD,交 x 軸于點 K ,當E QF 的中點且 FN=FK 時,求直線 DF 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構(gòu)造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC45°,∠ABC60°,AB4D是邊BC上的一個動點,以AD為直徑畫⊙O分別交ABAC于點E、F,則弦EF長度的最小值為(

A.B.C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax26ax5aa為常數(shù))的圖像為拋物線C

1)求證:不論a為何值,拋物線Cx軸總有兩個不同的公共點;

2)設(shè)拋物線Cx軸于點A、B,交y軸于點D,若ABD的面積為20,求a的值;

3)設(shè)點E2,4)、F34),若拋物線C與線段EF只有一個公共點,結(jié)合函數(shù)圖像,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Ly=ax2+bx+cx軸交于A、B30)兩點(AB的左側(cè)),與y軸交于點C03),已知對稱軸x=1

1)求拋物線L的解析式;

2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;

3)設(shè)點P是拋物線L上任一點,點Q在直線lx=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店計劃購進甲、乙兩種高檔水果共400千克,每千克的售價、成本與購進數(shù)量(千克)之間關(guān)系如表:

每千克售價(元)

每千克成本(元)

0.1x+100

50

0.2x+1200x≤200

60

200x≤400

1)若甲、乙兩種水果全部售完,求水果店獲得總利潤y(元)與購進乙種水果x(千克)之間的函數(shù)關(guān)系式(其他成本不計);

2)若購進兩種水果都不少于100千克,當兩種水果全部售完,水果能獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用圖象反映儲油罐內(nèi)的油量V與輸油管開啟時間t的函數(shù)關(guān)系.觀察這個圖象,以下結(jié)論正確的有________________

①隨著輸油管開啟時間的增加,儲油罐內(nèi)的油量在減少;

②輸油管開啟10分鐘時,儲油罐內(nèi)的油量是80立方米;

③如果儲油罐內(nèi)至少存油40立方米,那么輸油管最多可以開啟36分鐘;

④輸油管開啟30分鐘后,儲油罐內(nèi)的油量只有原油量的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的函數(shù)圖象如圖,點位于坐標原點,點軸的正半軸上,點在二次函數(shù)位于第一象限的圖象上,,,…都是直角頂點在拋物線上的等腰直角三角形,則的斜邊長為(  )

A.20B.C.22D.

查看答案和解析>>

同步練習(xí)冊答案