【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

【答案】解:在直角三角形ACO中,sin75°= = ≈0.97, 解得OC≈38.8,
在直角三角形BCO中,tan30°= = ,
解得BC≈67.3.
答:該臺燈照亮水平面的寬度BC大約是67.3cm.
【解析】根據sin75°= = ,求出OC的長,根據tan30°= ,再求出BC的長,即可求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=1,OC= ,在第二象限內,以原點O為位似中心將矩形AOCB放大為原來的 倍,得到矩形A1OC1B1 , 再以原點O為位似中心將矩形A1OC1B1放大為原來的 倍,得到矩形A2OC2B2…,以此類推,得到的矩形A100OC100B100的對角線交點的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,AC>BC.
(1)尺規(guī)作圖:在AC邊上求作一點P,使PB=PC(保留作圖痕跡,不寫作法);
(2)若BC=6,∠C=30°,求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,利用直尺和圓規(guī),根據下列要求作圖(保留作圖痕跡,不要求寫作法),并根據要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由(1)、(2)可得:線段EF與線段BD的關系為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是cm2 . (結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經過第三象限,則實數(shù)b的取值范圍是(
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,△ABC的頂點A、B、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1

(1)在網格中畫出△A1B1C1;
(2)計算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復計算).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據:sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有2000名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組在全校隨機抽取了150名學生進行抽樣調查.整理樣本數(shù)據,得到下列圖表:
(1)理解劃線語句的含義,回答問題:如果150名學生全部在同一個年級抽取,這樣的抽樣是否合理?請說明理由;
(2)根據抽樣調查的結果,將估計出的全校2000名學生上學方式的情況繪制成條形統(tǒng)計圖;
(3)該校數(shù)學興趣小組結合調查獲取信息,向學校提出了一些建議,如:騎車上學的學生約占全校的34%,建議學校合理安排自行車停車場地,請你結合上述統(tǒng)計的全過程,再提出一條合理化的建議.

查看答案和解析>>

同步練習冊答案