【題目】已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由(1)、(2)可得:線段EF與線段BD的關(guān)系為 .
【答案】
(1)解:如圖所示:
(2)線段EF與線段BD互相垂直平分
【解析】(2)設(shè)BD和EF的交點為M, 則∠BME=∠BMF=90°,
∵BD平分∠ABC,∴∠EBM=∠FBM,
在△EBM和△FBM中
∴△EBM≌△FBM(ASA),
∴EM=FM,
∴BD垂直平分EF,
即線段EF與線段BD互相垂直平分.
故答案為:線段EF與線段BD互相垂直平分.
(1)以點B為圓心,任意長為半徑畫弧與AB,BC交于兩點,再以這兩點為圓心,大于兩點間距離的一半為半徑畫弧,連接兩弧的交點與B,與AC交于點D.BD就是所求的角平分線.(2)分別以B、D為圓心,大于BD的一半為半徑畫弧,連接兩弧的交點,交AB于點E,交BC與點F,EF就是所求的線段的垂直平分線,由△EBM≌△FBM得到EM=MF,不難得出EF與BD互相垂直平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標(biāo)”.例如,點(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點( , )的“雙角坐標(biāo)”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設(shè)點M運動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設(shè)點M運動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點A、B分別落在坐標(biāo)軸上.O為原點,點A的坐標(biāo)為(6,0),點B的坐標(biāo)為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當(dāng)一個動點到達終點時,另一個動點也隨之停止運動,設(shè)動點M、N運動的時間為t秒(t>0).
(1)當(dāng)t=3秒時,直接寫出點N的坐標(biāo);
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當(dāng)t為何值時,△MNA是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com