【題目】如圖,已知AMBN,∠A=60°,點(diǎn)P是射線(xiàn)AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線(xiàn)AM于點(diǎn)CD


1)求∠CBD的度數(shù);
2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB:∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
3)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=ABD,求此時(shí)∠ABC的度數(shù).

【答案】160°;(2)不變,21,見(jiàn)解析;(330°

【解析】

1)根據(jù)角平分線(xiàn)的定義只要證明∠CBD=ABN即可;
2)不變.可以證明∠APB=PBN,∠ADB=DBN=PBN;
3)想辦法證明∠ABC=CBP=DBP=DBN即可解決問(wèn)題;

1)∵AMBN,
∴∠ABN=180°-A=120°
又∵BC,BD分別平分∠ABP和∠PBN


∴∠CBD=CBP+DBP=(∠ABP+PBN=ABN=60°
2)不變.理由如下:
AMBN,
∴∠APB=PBN,∠ADB=DBN,
又∵BD平分∠PBN
∴∠ADB=DBN=PBN=APB,即∠APB:∠ADB=21
3)∵AMBN,
∴∠ACB=CBN
又∵∠ACB=ABD,
∴∠CBN=ABD
∴∠ABC=ABD-CBD=CBN-CBD=DBN,
∴∠ABC=CBP=DBP=DBN
∴∠ABC= ABN=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC沿BC方向平移2cm得到DEF,若ABC的周長(zhǎng)為16cm,則四辺形ABFD的周長(zhǎng)為( )

A. 16cmB. 18cmC. 20cmD. 22cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,若分別以△ABCACBC兩邊為邊向外側(cè)作的四邊形ACDEBCFG為正方形,則稱(chēng)這兩個(gè)正方形為外展雙葉正方形.

(1)發(fā)現(xiàn):如圖2,當(dāng)∠C=90°時(shí),求證:△ABC與△DCF的面積相等.

(2)引申:如果∠C90°時(shí),(1)中結(jié)論還成立嗎?若成立,請(qǐng)結(jié)合圖1給出證明;若不成立,請(qǐng)說(shuō)明理由;

(3)運(yùn)用:如圖3,分別以△ABC的三邊為邊向外側(cè)作的四邊形ACDE、BCFGABMN為正方形,則稱(chēng)這三個(gè)正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當(dāng)∠C=_____°時(shí),圖中陰影部分的面積和有最大值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD120°,∠B∠D90°,在BCCD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN∠ANM的度數(shù)為( )

A. 130°B. 120°C. 110°D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線(xiàn)AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線(xiàn)段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4 mg/L,此后濃度呈直線(xiàn)型增加,在第7小時(shí)達(dá)到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關(guān)信息回答下列問(wèn)題:

(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量取值范圍;

(2)當(dāng)空氣中的CO濃度達(dá)到34 mg/L時(shí),井下3 km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?

(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時(shí),才能回到礦井開(kāi)展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)OOECD于點(diǎn)O,∠EOB=115°,求∠AOC的度數(shù).請(qǐng)補(bǔ)全下面的解題過(guò)程(括號(hào)中填寫(xiě)推理的依據(jù)).

解:∵OECD于點(diǎn)O(已知),

____________).

∵∠EOB=115°(已知),

∴∠DOB=______=115°-90°=25°

∵直線(xiàn)AB,CD相交于點(diǎn)O(已知),

∴∠AOC=______=25°______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,點(diǎn)DBC的中點(diǎn),BD=ABADBC

1)如圖1,求∠BAD的度數(shù);

2)如圖2,點(diǎn)EBC上一點(diǎn),點(diǎn)FAC上一點(diǎn),連接AE、BF交于點(diǎn)G,若∠AGF=60°,求證:BE=CF;

3)如圖3,在(2)的條件下,點(diǎn)GBF的中點(diǎn),點(diǎn)HAG上一點(diǎn),延長(zhǎng)BHAC于點(diǎn)KAK=HK,BMAEAE延長(zhǎng)線(xiàn)于點(diǎn)M,BG=9,HM=10,求線(xiàn)段AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知AD平分∠BAC,B+C=180°

(1)如圖①,當(dāng)∠B=90°時(shí),求證:DB=DC;

(2)如圖②,如果∠ABD<90°時(shí),(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明,如果不成立,請(qǐng)舉反例說(shuō)明;

(3)如圖③,四邊形ABDC,B=45°,C=135°,DB=DC=1,則ABAC=___.

查看答案和解析>>

同步練習(xí)冊(cè)答案