【題目】如圖1,若分別以△ABCACBC兩邊為邊向外側(cè)作的四邊形ACDEBCFG為正方形,則稱這兩個(gè)正方形為外展雙葉正方形.

(1)發(fā)現(xiàn):如圖2,當(dāng)∠C=90°時(shí),求證:△ABC與△DCF的面積相等.

(2)引申:如果∠C90°時(shí),(1)中結(jié)論還成立嗎?若成立,請(qǐng)結(jié)合圖1給出證明;若不成立,請(qǐng)說(shuō)明理由;

(3)運(yùn)用:如圖3,分別以△ABC的三邊為邊向外側(cè)作的四邊形ACDE、BCFGABMN為正方形,則稱這三個(gè)正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當(dāng)∠C=_____°時(shí),圖中陰影部分的面積和有最大值是________.

【答案】1)證明見(jiàn)解析;(2)成立,證明見(jiàn)解析;(318.

【解析】

試題(1)因?yàn)?/span>AC=DC∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,從而△ABC△DFC的面積相等;

2)延長(zhǎng)BC到點(diǎn)P,過(guò)點(diǎn)AAP⊥BP于點(diǎn)P;過(guò)點(diǎn)DDQ⊥FC于點(diǎn)Q.得到四邊形ACDEBCFG均為正方形,AC=CD,BC=CF∠ACP=∠DCQ.所以△APC≌△DQC

于是AP=DQ.又因?yàn)?/span>SABC=BCAP,SDFC=FCDQ,所以SABC=SDFC

3)根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,當(dāng)△ABC是直角三角形,即∠C90度時(shí),陰影部分的面積和最大.所以S陰影部分面積和=3SABC=3××3×4=18

1)證明:在△ABC△DFC中,

,

∴△ABC≌△DFC

∴△ABC△DFC的面積相等;

2)解:成立.理由如下:

如圖,延長(zhǎng)BC到點(diǎn)P,過(guò)點(diǎn)AAP⊥BP于點(diǎn)P;過(guò)點(diǎn)DDQ⊥FC于點(diǎn)Q

∴∠APC=∠DQC=90°

四邊形ACDE,BCFG均為正方形,

∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°

∴∠ACP=∠DCQ

,

△APC≌△DQCAAS),

∴AP=DQ

∵SABC=BCAP,SDFC=FCDQ,

∴SABC=SDFC;

3)解:根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,

若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,

當(dāng)△ABC是直角三角形,即∠C90度時(shí),陰影部分的面積和最大.

∴S陰影部分面積和=3SABC=3××3×4=18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩艘船,現(xiàn)同時(shí)由A地順流而下,乙船到B地接到通知,須立即逆流而上到達(dá)與A,B兩地在同一直線的C地執(zhí)行任務(wù),甲船繼續(xù)順流航行.已知甲、乙兩船在靜水中的速度都是每小時(shí)7.5千米,水流的速度為每小時(shí)2.5千米,A,C兩地間的距離為10千米.如果乙船由A地經(jīng)B地再到達(dá)C地共用了4小時(shí),問(wèn):乙船從B地到達(dá)C地時(shí),甲船距離B地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】榮獲中華名果稱號(hào)的市臍橙果大形正,橙紅鮮艷,含果汁55%以上,深受廣大吃貨的喜愛(ài).現(xiàn)有20市臍橙,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:千克)

-3

-2

-15

0

1

25

筐數(shù)

1

4

2

3

2

8

1)在這20市臍橙中,最重的一筐比最輕的一筐重多少千克?

2)與標(biāo)準(zhǔn)重量比較,20市臍橙總計(jì)超過(guò)或不足多少千克?

3)若市臍橙每千克售價(jià)8元,則這20市臍橙可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用.

(1)如圖1,可以求出陰影部分的面積是 (寫(xiě)成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來(lái),重新拼成一個(gè)矩形,它的寬是 ,長(zhǎng)是 ,面積是 (寫(xiě)成多項(xiàng)式乘法的形式);

(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;

(4)運(yùn)用你所得到的公式,計(jì)算下列各題:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家還發(fā)現(xiàn):在一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。即如果一個(gè)直角三角形的兩條直角邊長(zhǎng)度分別是,斜邊長(zhǎng)度是,那么。

1直接填空:如圖①,若a3,b4,則c ;若,,則直角三角形的面積是 ______

2)觀察圖②,其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上,請(qǐng)利用幾何圖形的之間的面積關(guān)系,試說(shuō)明。

3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB8,BC10,利用上面的結(jié)論求EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交AC,ABDE,連接BD,DE,若∠A=30°,AB=AC,則∠BDE的度數(shù)為( ).

A.52.5°B.60°C.67.5°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AMBN,∠A=60°,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BCBD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)CD


1)求∠CBD的度數(shù);
2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB:∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
3)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=ABD,求此時(shí)∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種鉑金飾品在甲、乙兩種商店銷(xiāo)售,甲店標(biāo)價(jià)每克468元,按標(biāo)價(jià)出售,不優(yōu)惠,乙店標(biāo)價(jià)每克525元,但若買(mǎi)的鉑金飾品重量超過(guò)3克,則超出部分可打八折出售.若購(gòu)買(mǎi)的鉑金飾品重量為克,其中

1)分別列出到甲、乙商店購(gòu)買(mǎi)該種鉑金飾品所需費(fèi)用(用含x的代數(shù)式表示);

2)李阿姨要買(mǎi)一條重量10克的此種鉑金飾品,到哪個(gè)商店購(gòu)買(mǎi)最合算;

3)要買(mǎi)一條重量多少克的此種鉑金飾品,才能到乙商店購(gòu)買(mǎi)比到甲商店優(yōu)惠300元.

查看答案和解析>>

同步練習(xí)冊(cè)答案