【題目】如圖,BDBE,∠D=∠E,∠ABC=∠DBE90°,BFAE,且點(diǎn)AC,E在同一條直線上.

1)求證:△DAB≌△ECB

2)若AD3,AF1,求BE的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

根據(jù)角的和差得到∠ABD=∠CBE,利用全等三角形判定即可求解.

根據(jù)全等,得到ABBCADCE,以及等腰三角形性質(zhì)CFBFAF,最后用勾股定理求解.

1)證明:∵∠ABC=∠DBE90°,

∴∠ABD=∠CBE,

BDBE,∠D=∠E,

∴△DAB≌△ECBASA);

2)解:∵△DAB≌△ECB;

ABBC,ADCE,

∵∠ABC90°BFAE,

CFBFAF1,∠BFE90°,

EFCF+CE4,

BE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

問(wèn)題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡(jiǎn),得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱(chēng)為換根法”.

請(qǐng)用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ADB=∠ACB90°,ACBD相交于點(diǎn)O,且OAOB,下列結(jié)論:ADBCACBD;CDA=∠DCB;CDAB,其中正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某地火車(chē)站及周?chē)暮?jiǎn)單平面圖.(每個(gè)小正方形的邊長(zhǎng)代表1千米.)

1)請(qǐng)以火車(chē)站所在的位置為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,并表示出體育場(chǎng)A、超市B市場(chǎng)C、文化宮D的坐標(biāo).

2)在這個(gè)坐標(biāo)平面內(nèi),連接OA,若∠AOB的度數(shù)大約為53°,請(qǐng)利用所給數(shù)據(jù)描述體育場(chǎng)相對(duì)于火車(chē)站的位置.

3)要想用第(2)問(wèn)的方法描述文化宮在火車(chē)站的什么位置,需要測(cè)量哪些數(shù)據(jù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為,點(diǎn),,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)是正比例函數(shù)與反比例函數(shù)的圖象在第一象限的交點(diǎn),軸,垂足為點(diǎn),的面積是2.

1)求的值以及這兩個(gè)函數(shù)的解析式;

2)若點(diǎn)軸上,且是以為腰的等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)投入13 800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷(xiāo)售價(jià)如表所示:

類(lèi)別/單價(jià)

成本價(jià)

銷(xiāo)售價(jià)(/)

24

36

33

48

(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?

(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸相交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為

直接寫(xiě)出、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱(chēng)軸.

連接、,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程:Max2+bx+c=0; Ncx2+bx+a=0,其中ac≠0a≠c,以下四個(gè)結(jié)論:

①如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N也有兩個(gè)不相等的實(shí)數(shù)根;

②如果方程M有兩根符號(hào)相同,那么方程N的兩根符號(hào)也相同;

③如果m是方程M的一個(gè)根,那么是方程N的一個(gè)根;

④如果方程M和方程N有一個(gè)相同的根,那么這個(gè)根必是x=1

正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案