【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正確的有( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】C
【解析】∵在矩形ABCD中,AE平分∠BAD,

∴∠BAE=∠DAE=45°,

∴△ABE是等腰直角三角形,

∴AE= AB,

∵AD= AB,

∴AE=AD,

在△ABE和△AHD中,

,

∴△ABE≌△AHD(AAS),

∴BE=DH,

∴AB=BE=AH=HD,

∴∠ADE=∠AED= (180°﹣45°)=67.5°,

∴∠CED=180°﹣45°﹣67.5°=67.5°,

∴∠AED=∠CED,故①正確;

∵AB=AH,

∵∠AHB= (180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),

∴∠OHE=67.5°=∠AED,

∴OE=OH,

∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,

∴∠DHO=∠ODH,

∴OH=OD,

∴OE=OD=OH,故②正確;

∵∠EBH=90°﹣67.5°=22.5°,

∴∠EBH=∠OHD,

在△BEH和△HDF中,

,

∴△BEH≌△HDF(ASA),

∴BH=HF,HE=DF,故③正確;

∵HE=AE﹣AH=BC﹣CD,

∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正確;

∵AB=AH,∠BAE=45°,

∴△ABH不是等邊三角形,

∴AB≠BH,

∴即AB≠HF,故⑤錯(cuò)誤;

綜上所述,結(jié)論正確的是①②③④共4個(gè).

所以答案是:C.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和矩形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;矩形的四個(gè)角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請用含有x整式表示線段AD的長為______m

2)求這棵樹高有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將周長為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點(diǎn),過D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.

(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.

(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,點(diǎn)A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A1落在射線OB上,點(diǎn)A繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A2落在射線OB上,點(diǎn)A繞點(diǎn)A2順時(shí)針旋轉(zhuǎn)后的對應(yīng)點(diǎn)A3落在射線OB上,…,連接AA1 , AA2 , AA3…,依此作法,則∠AAnAn+1等于度.(用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,,沿平移,且使點(diǎn)平移到點(diǎn),平移后的對應(yīng)點(diǎn)分別為

1)寫出兩點(diǎn)的坐標(biāo);

2)畫出平移后所得的;

3)五邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進(jìn)A,B兩種型號的低排量汽車,其中A型汽車的進(jìn)貨單價(jià)比B型汽車的進(jìn)貨單價(jià)多2萬元花50萬元購進(jìn)A型汽車的數(shù)量與花40萬元購進(jìn)B型汽車的數(shù)量相同,銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺(tái))與售價(jià)x(萬元/臺(tái))滿足函數(shù)關(guān)系式y(tǒng)A=﹣x+20,B型汽車的每周銷量yB(臺(tái))與售價(jià)x(萬元/臺(tái))滿足函數(shù)關(guān)系式y(tǒng)B=﹣x+14.
(1)求A、B兩種型號的汽車的進(jìn)貨單價(jià);
(2)已知A型汽車的售價(jià)比B型汽車的售價(jià)高2萬元/臺(tái),設(shè)B型汽車售價(jià)為t萬元/臺(tái).每周銷售這兩種車的總利潤為W萬元,求W與t的函數(shù)關(guān)系式,A、B兩種型號的汽車售價(jià)各為多少時(shí),每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年西寧市高中招生體育考試測試管理系統(tǒng)的運(yùn)行,將測試完進(jìn)行換算統(tǒng)分改為計(jì)算機(jī)自動(dòng)生成,現(xiàn)場公布成績,降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),對全市部分初三男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類:A、實(shí)心球(2kg);B、立定跳遠(yuǎn);C、50米跑;D、半場運(yùn)球;E、其它.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)假定全市初三畢業(yè)學(xué)生中有5500名男生,試估計(jì)全市初三男生中選50米跑的人數(shù)有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個(gè)項(xiàng)目:B、立定跳遠(yuǎn);C、50米跑;D、半場運(yùn)球中各選一項(xiàng),同時(shí)選擇半場運(yùn)球、立定跳遠(yuǎn)的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案