【題目】數(shù)學(xué)活動(dòng)課上,小穎同學(xué)用兩塊完全一樣的透明等腰直角三角板ABC、DEF進(jìn)行探究活動(dòng).
操作:使點(diǎn)D落在線(xiàn)段AB的中點(diǎn)處并使DF過(guò)點(diǎn)C(如圖1),然后將其繞點(diǎn)D順時(shí)針旋轉(zhuǎn),直至點(diǎn)E落在AC的延長(zhǎng)線(xiàn)上時(shí)結(jié)束操作,在此過(guò)程中,線(xiàn)段DE與AC或其延長(zhǎng)線(xiàn)交于點(diǎn)K,線(xiàn)段BC與DF相交于點(diǎn)G(如圖2,3).
探究1:在圖2中,求證:△ADK∽△BGD.
探究2:在圖2中,求證:KD平分∠AKG.
探究3:
①在圖3中,KD仍平分∠AKG嗎?若平分,請(qǐng)加以證明;若不平分,請(qǐng)說(shuō)明理由.
②在以上操作過(guò)程中,若設(shè)AC=BC=8,KG=x,△DKG的面積為y,請(qǐng)求出y與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍.
【答案】探究1:證明見(jiàn)解析;探究2:證明見(jiàn)解析;探究3:y=2x,其中4≤x≤8-8.
【解析】
試題探究1,根據(jù)△ABC、△DEF是等腰直角三角形可知∠KAD=∠KDG=∠DBG=45°,由三角形內(nèi)角和定理可知∠KDA+∠BDG=135°.∠BDG+∠BGD=135°,故可得出△ADK∽△BGD;
探究2,根據(jù)△ADK∽△BGD可知,再由點(diǎn)D是線(xiàn)段AB的中點(diǎn)得出BD=AD,故可得出△ADK∽△DCK,∠AKD=∠DKC,由此可得出結(jié)論;
探究3,①同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,故可得出結(jié)論;
②過(guò)點(diǎn)D作DM⊥AC于點(diǎn)M,DN⊥KG于點(diǎn)N,由①知線(xiàn)段KD平分∠AKG,故DM=DN.再由AC=BC=8,點(diǎn)D是線(xiàn)段AB的中點(diǎn),∠KAD=45°,可知DM=DN=4.根據(jù)三角形的面積公式即可得出結(jié)論.
試題解析:探究1,
∵∠KAD=∠KDG=∠DBG=45°,
∴∠KDA+∠BDG=135°.
∵∠BDG+∠BGD=135°,
∴∠KDA=∠BGD,
∴△ADK∽△BGD;
探究2,∵△ADK∽△BGD,
∴,
∵點(diǎn)D是線(xiàn)段AB的中點(diǎn),
∴BD=AD,
∴,
∴,
∵∠KAD=∠KDG=45°,
∴△ADK∽△DCK,
∴∠AKD=∠DKC,
∴KD平分∠AKG.
探究3,①KD仍平分∠AKG.
理由如下:
∵同探究1可得△ADK∽△BGD,
同探究2可得,△ADK∽△DGK,
∴∠AKD=∠DKG,
∴KD仍平分∠AKG;
②如圖,過(guò)點(diǎn)D作DM⊥AC于點(diǎn)M,DN⊥KG于點(diǎn)N,
由①知線(xiàn)段KD平分∠AKG,
∴DM=DN.
∵AC=BC=8,點(diǎn)D是線(xiàn)段AB的中點(diǎn),∠KAD=45°,
∴DM=DN=4.
∵KG=x,
∴S△DKG=y=×4x=2x,
對(duì)于圖3的情況同理可得y=2x,
綜上所示,y=2x,其中4≤x≤8-8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是△ABC的BC邊上一點(diǎn),連接AD,作△ABD的外接圓,將△ADC沿直線(xiàn)AD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在上.
(1)求證:AE=AB;
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長(zhǎng)線(xiàn)上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線(xiàn);
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)為的平分線(xiàn)上一點(diǎn),連接、.
(1)求證:;
(2)若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線(xiàn)OB、AC相交于D點(diǎn),雙曲線(xiàn)y=(x>0)經(jīng)過(guò)D點(diǎn),交BC的延長(zhǎng)線(xiàn)于E點(diǎn),且OBAC=160,有下列四個(gè)結(jié)論:
①雙曲線(xiàn)的解析式為y=(x>0);
②E點(diǎn)的坐標(biāo)是(5,8);
③sin∠COA=;
④AC+OB=12.
其中正確的結(jié)論有 (填上序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+與雙曲線(xiàn)y=在第一象限內(nèi)的圖象交于一點(diǎn)A(1,1),與x負(fù)半軸交與點(diǎn)B.點(diǎn)P(m,n)是該雙曲線(xiàn)在第一象限內(nèi)圖象上的一點(diǎn),且P點(diǎn)在A點(diǎn)的右側(cè),分別過(guò)點(diǎn)A、P作x軸的垂線(xiàn),垂足分別為點(diǎn)C、D,連結(jié)PB.則△ABC的面積___△PBD的面積(填“<”、“=”或“>”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點(diǎn) D,E,過(guò)點(diǎn)B作⊙O的切線(xiàn), 交 AC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩塊完全相同的直角三角形紙板ABC和DEF疊放,其中∠ABC=∠DEF=90°,點(diǎn)O為邊BC和EF的交點(diǎn).
(1)求證:△BOF≌△COE.
(2)若∠F=30°,AE=1,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于半徑為的⊙O,AC為直徑,AB=,弦BD與AC交于點(diǎn)E,點(diǎn)P為BD延長(zhǎng)線(xiàn)上一點(diǎn),且∠PAD=∠ABD,過(guò)點(diǎn)A作AF⊥BD于點(diǎn)F,連接OF.
(1)求證:AP是⊙O的切線(xiàn);
(2)求證:∠AOF=∠PAD;
(3)若tan∠PAD=,求OF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com