【題目】若一組數(shù)據(jù)4,1,6x,5的平均數(shù)為4,則這組數(shù)據(jù)的眾數(shù)為( 。

A. 6B. 5C. 4D. 3

【答案】C

【解析】

根據(jù)平均數(shù)的定義可以先求出x的值,再根據(jù)眾數(shù)的定義求出這組數(shù)的眾數(shù)即可.

解:利用平均數(shù)的計算公式,得(4+1+6+x+5)=4×5,

解得x4,

則這組數(shù)據(jù)的眾數(shù)即出現(xiàn)最多的數(shù)為4

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個一次函數(shù)的圖象如圖所示,

1)分別求出兩個一次函數(shù)的解析式;

2)求出兩個一次函數(shù)圖象的交點C坐標;

3)求這兩條直線與y軸圍成△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(1,2),B(3,1)C(4,3).

1)作ABC關(guān)于y軸的對稱圖形A1B1C1,寫出點C關(guān)于y軸的對稱點C1的坐標;

2)作ABC關(guān)于直線m(直線m上各點的縱坐標都為-1)的對稱圖形A2B2C2,寫出點C關(guān)于直線m的對稱點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在O中,AB,CD是直徑,BE是切線,B為切點,

連接AD,BC,BD.

(1)求證:ABD≌△CDB;

(2)若DBE=35°,求ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1∥l2 , 點A是l1上的動點,點B在l1上,點C、D在l2上,∠ABC,∠ADC的平分線交于點E(不與點B,D重合).
(1)若點A在點B的左側(cè),∠ABC=80°,∠ADC=60°,過點E作EF∥l1 , 如圖①所示,求∠BED的度數(shù).

(2)若點A在點B的左側(cè),∠ABC=α°,∠ADC=60°,如圖②所示,求∠BED的度數(shù);(直接寫出計算的結(jié)果)

(3)若點A在點B的右側(cè),∠ABC=α°,∠ADC=60°,如圖③所示,求∠BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x+m=0有兩個相等的實數(shù)根,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A、B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所指區(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.

1)用畫樹狀圖或列表法求乙獲勝的概率;

2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個十二邊形的每個內(nèi)角都是相等的,那么這個內(nèi)角的度數(shù)是 。

查看答案和解析>>

同步練習(xí)冊答案