【題目】如圖,有一個轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個相同的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當(dāng)作指向右邊的扇形),求下列事件的概率:

(1)指針指向綠色;

(2)指針指向紅色或黃色;

(3)指針不指向紅色.

【答案】(1);(2)(3)

【解析】

試題分析:由轉(zhuǎn)盤分成4個相同的圖形,即共有4種等可能的結(jié)果,①綠色的有1部分,②紅色或黃色的共有3部分,③不指向紅色的,即綠色或黃色的共有2部分,直接利用概率公式求解即可求得答案.

解:轉(zhuǎn)盤分成4個相同的圖形,即共有4種等可能的結(jié)果,

綠色的有1部分,

指針指向綠色的概率為:;

紅色或黃色的共有3部分,

指針指向紅色或黃色的概率為:;

不指向紅色的,即綠色或黃色的共有2部分,

指針不指向紅色的概率為:=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中畫出兩條相交直線y=x和y=kx+b,交點為(x0 , y0),在x軸上表示出不與x0重合的x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標為y1的點(x2 , y1),然后在x軸上確定對應(yīng)的數(shù)x2 , …,依次類推到(xn , yn-1),我們來研究隨著n的不斷增加,xn的變化情況.如圖1(注意:圖在下頁上),若k=2,b=—4,隨著n的不斷增加,xn逐漸(填“靠近”或“遠離”)x0;如圖2,若k= ,b=2,隨著n的不斷增加,xn逐漸(填“靠近”或“遠離”)x0;若隨著n的不斷增加,xn逐漸靠近x0 , 則k的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標系的原點O在格點上, 軸、軸都在網(wǎng)格線上.線段AB的端點A、B在格點上.

(1)將線段AB繞點O逆時針90°得到線段A1B1,請在圖中畫出線段A1B1;

(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點O成中心對稱,請在圖中畫出線段A2B2

(3)在(1)、(2)的條件下,點P是此平面直角坐標系內(nèi)的一點,當(dāng)以點A、B、B2、P為頂點的四邊形是平行四邊形時,請直接寫出點P的坐標:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx﹣4與x軸交于A,B兩點,(點B在點A的右側(cè))且A,B兩點的坐標分別為(﹣2,0)、(8,0),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q,交BD于點M.

(1)求拋物線的解析式;
(2)當(dāng)點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?
(3)在(2)的結(jié)論下,試問拋物線上是否存在點N(不同于點Q),使三角形BCN的面積等于三角形BCQ的面積?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時間x()之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:

(1)求手機支付金額y()與騎行時間x()的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點C是線段AB上一點,點M,N,P分別是線段AC,BC,AB的中點.

(1)若AB=12 cm,則MN的長度是______cm;

(2)若AC=3 cm,CP=1 cm,求線段PN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(能簡便的用簡便方法計算)

(1)8+(-10)-(-5) (2)

(3) (4)×(-30)

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,若∠ABC的平分線把邊AD分成長是2cm3cm的兩條線段,求□ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案