【題目】如圖,直線AB和CD交于點O,∠COF=90°,OC平分∠AOE,∠COE=40°.
(1)求∠BOD的度數;
(2)OF平分∠BOE嗎?請說明理由.
科目:初中數學 來源: 題型:
【題目】(1)小河的同旁有甲、乙兩個村莊(左圖),現計劃在河岸AB上建一個水泵站,向兩村供水,用以解決村民生活用水問題。(保留作圖痕跡)
①如果要求水泵站到甲、乙兩村莊的距離相等,水泵站M應建在河岸AB上的何處?
②如果要求建造水泵站,供水管道使用建材最省,水泵站N又應建在河岸AB上的何處?
(2)如圖,作出△ABC關于直線l的對稱圖形;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?
(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?
(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿方向運動,當點E到達點C時停止運動,過點E做,交CD于F點,設點E運動路程為x, ,如圖2所表示的是y與x的函數關系的大致圖象,當點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是( )
A. B. C. 6 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
【答案】
【解析】分析:根據菱形的性質易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD為等邊三角形,根據等邊三角形的性質可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.
詳解:∵菱形ABCD中,其周長為32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD為等邊三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根據勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面積為: =.
點睛:本題考查了菱形性質:1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.
【題型】填空題
【結束】
17
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1所示,已知線段AB=20cm,在AB上取一點P,M是AB的中點,N是AP中點,若MN=3cm,求線段AP的長;
(2)如圖2所示,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.則∠COE是多少度?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com