【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?
(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?
(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
【答案】(1)玩具銷售單價為60元或70元時,可獲得12000元銷售利潤;(2)玩具銷售單價定為65元時,商場獲得的銷售利潤最大,最大利潤是12250元;(3)商場銷售該品牌玩具獲得的最大利潤為10000元.
【解析】分析:(1)利用每件利潤×銷量=12000,進而求出答案即可;
(2)利用每件利潤×銷量=總利潤,進而求出最值即可;
(3)根據(jù)已知得出自變量x的取值范圍,進而利用函數(shù)增減性得出答案.
詳解:
(1)設該種品牌玩具的銷售單價為x元
則(x﹣30)[600﹣10(x﹣40)]=12000﹣10x2+1300x﹣30000=12000,
解得:x1=60,x2=70,
答:玩具銷售單價為60元或70元時,可獲得12000元銷售利潤;
(2)設該種品牌玩具的銷售單價為x元,銷售該品牌玩具獲得利潤為w元
則w=(x﹣30)[600﹣10(x﹣40)]
=﹣10x2+1300x﹣30000
=﹣10(x﹣65)2+12250
∵a=﹣10<0 拋物線的開口向下,
∴當x=65時 W最大值=12250(元),
答:玩具銷售單價定為65元時,商場獲得的銷售利潤最大,最大利潤是12250元;
(3)根據(jù)題意得
解得:46≤x≤50
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,對稱軸x=65∴當46≤x≤50時,y隨x增大而增大.
∴當x=50時,W最大值=10000(元),
答:商場銷售該品牌玩具獲得的最大利潤為10000元.
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費2900萬元,2016年投入教育經(jīng)費3509萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費的年平均增長率;
(2)按照義務教育法規(guī)定,教育經(jīng)費的投入不低于國民生產(chǎn)總值的百分之四,結合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2018年需投入教育經(jīng)費4250萬元,如果按(1)中教育經(jīng)費投入的增長率,到2018年該地區(qū)投入的教育經(jīng)費是否能達到4250萬元?請說明理由.
(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】跳繩時,繩甩到最高處時的形狀是拋物線.正在甩繩的甲、乙兩名同學拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E.以點O為原點建立如圖所示的平面直角坐標系, 設此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式;
(2)如果小華站在OD之間,且離點O的距離為3米,當繩子甩到最高處時剛好通過他的頭頂,請你算出小華的身高;
(3)如果身高為1.4米的小麗站在OD之間,且離點O的距離為t米, 繩子甩到最高處時超過她的頭頂,請結合圖像,寫出t的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F在對角線BD上,且BF=DE.
⑴求證:四邊形AECF是菱形.
⑵若AB=2,BF=1,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 E,F 是ABCD 對角線上兩點,在條件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:分別與x軸、y軸交于點B、C,且與直線l2:交于點A.
(1)求出點A的坐標
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式
(3)在(2)的條件下,設P是射線CD上的點,在平面內是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和CD交于點O,∠COF=90°,OC平分∠AOE,∠COE=40°.
(1)求∠BOD的度數(shù);
(2)OF平分∠BOE嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形紙片ABCD的兩邊AB:BC=2:1,過點B折疊紙片,使點A落在邊CD上的點F處,折痕為BE.若AB的長為4,則EF的長為( 。
A. 8-4B. 2C. 4 6D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com