【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),DG⊥CE,點(diǎn)G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=69°,求∠EDG的度數(shù).
【答案】(1)詳見解析;(2)67°
【解析】
(1)由G是CE的中點(diǎn),DG⊥CE得到DG是CE的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到DE=DC,由DE是Rt△ADB的斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到DE=BE=AB,即可得到DC=BE;
(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據(jù)三角形外角性質(zhì)得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE,由此根據(jù)外角的性質(zhì)來求∠BCE的度數(shù)即可解決問題.
解:(1)如圖,∵G是CE的中點(diǎn),DG⊥CE,
∴DG是CE的垂直平分線,
∴DE=DC,
∵AD是高,CE是中線,
∴DE是Rt△ADB的斜邊AB上的中線,
∴DE=BE=AB,
∴DC=BE;
(2)∵DE=DC,
∴∠DEC=∠BCE,
∴∠EDB=∠DEC+∠BCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE,
∴∠AEC=3∠BCE=69°,
∴∠BCE=23°,
∵∠DGC=90°,
∴∠GDC=67°,
∵DE=DC,EG=CG,
∴∠EDG=∠GDC=67°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地電話撥號入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一.
計(jì)時(shí)制:0.05元/分;
包月制:50元/月(限一部個(gè)人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費(fèi)0.02元/分.
(1)某用戶某月上網(wǎng)的時(shí)間為x小時(shí),請你分別寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用.
(2)若某用戶估計(jì)一個(gè)月內(nèi)上網(wǎng)的時(shí)間為20小時(shí),你認(rèn)為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上,數(shù)學(xué)老師提出了如下問題:
如圖1,若線段AD為△ABC的角平分線,請問一定成立嗎?
小明和小芳分別作了如下探究:
小明發(fā)現(xiàn):如圖2,當(dāng)△ABC為直角三角形時(shí),且∠C=90°,∠CAB=60°時(shí),結(jié)論成立;
小芳發(fā)現(xiàn):如圖3,當(dāng)△ABC為任意三角形時(shí),過點(diǎn)C作AB的平行線,交AD的延長線于點(diǎn)E,利用此圖可以證明成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車沿相同的路線出發(fā).乙車先到達(dá)地并停留后,再以原來的速度按原路線返回,直到與甲車相遇.在這個(gè)過程中,兩車之間的距離與乙車行駛的時(shí)間之間的函數(shù)關(guān)系如圖所示,則當(dāng)兩車相距時(shí),乙車出發(fā)的時(shí)間為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,且與正比例函數(shù)y=x的圖象的交點(diǎn)為C(m,4).
(1)求一次函數(shù)y=kx+b的解析式;
(2)D是平面內(nèi)一點(diǎn),以O、C、D、B四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)D的坐標(biāo).(不必寫出推理過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)直角三角形紙片,∠C=90°,AB=13cm,BC=5cm,將其折疊,使點(diǎn)C落在斜邊上的點(diǎn)C′處,折痕為BD(如圖②),求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.已知∠ACB=30°,AB=1,
(1)求證:△A1AD1≌△CC1B;
(2)當(dāng)CC1=1時(shí),求證:四邊形ABC1D1是菱形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com