【題目】已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且|a+2|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.
①線(xiàn)段AB的長(zhǎng)|AB|=3;
②設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為x,當(dāng)|PA|﹣|PB|=2時(shí),x=0.5;
③若點(diǎn)P在A的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)P在A的左側(cè)移動(dòng)時(shí)|PM|+|PN|的值不變;
④在③的條件下,|PN|﹣|PM|的值不變.
以上①②③④結(jié)論中正確的是_______(填上所有正確結(jié)論的序號(hào))
【答案】①②④
【解析】(1)根據(jù)非負(fù)數(shù)的和為0,各項(xiàng)都為0;
(2)應(yīng)考慮到A、B、P三點(diǎn)之間的位置關(guān)系的多種可能解題;
(3)(4)利用中點(diǎn)性質(zhì)轉(zhuǎn)化線(xiàn)段之間的倍分關(guān)系得出.
(1)∵|a+2|+(b-1)2=0,
∴a=-2,b=1,
∴AB=|a-b|=3,即線(xiàn)段AB的長(zhǎng)度為3.
(2)當(dāng)P在點(diǎn)A左側(cè)時(shí),
|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-3≠2.
當(dāng)P在點(diǎn)B右側(cè)時(shí),
|PA|-|PB|=|AB|=3≠2.
∴上述兩種情況的點(diǎn)P不存在.
當(dāng)P在A、B之間時(shí),-2≤x≤1,
∵|PA|=|x+2|=x+2,|PB|=|x-1|=1-x,
∴由|PA|-|PB|=2,得x+2-(1-x)=2.
∴解得:x=0.5;
(3)由已知可得出:PM=PA,PN=PB,
|PM|+|PN|= (PA+PB)= PA+AB
所以,|PM|+|PN|的值隨P的位置變化而變化.
(4) 在(3)條件下,|PN|﹣|PM|=PB-PA=(PB-PA)=AB=
綜合上述,①②④說(shuō)法正確.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,關(guān)于,的多項(xiàng)式是6次多項(xiàng)式,且常數(shù)項(xiàng)為-6.
(1)點(diǎn)到的距離為______(直接寫(xiě)出結(jié)果);
(2)如圖1,點(diǎn)是數(shù)軸上一點(diǎn),點(diǎn)到的距離是到的距離的3倍(即),求點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù);
(3)如圖2,點(diǎn),分別從點(diǎn),同時(shí)出發(fā),分別以,的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng)(在,之間,在,之間),運(yùn)動(dòng)時(shí)間為,點(diǎn)為,之間一點(diǎn),且點(diǎn)到的距離是點(diǎn)到距離的一半(即),若,運(yùn)動(dòng)過(guò)程中到的距離(即)總為一個(gè)固定的值,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)下面的圖形是由邊長(zhǎng)為l的正方形按照某種規(guī)律排列而組成的.
(1)觀察圖形,填寫(xiě)下表:
圖形 | ① | ② | ③ |
正方形的個(gè)數(shù) | 8 |
|
|
圖形的周長(zhǎng) | 18 |
|
|
(2)推測(cè)第n個(gè)圖形中,正方形的個(gè)數(shù)為 ,周長(zhǎng)為 (都用含n的代數(shù)式表示).
(3)這些圖形中,任意一個(gè)圖形的周長(zhǎng)y與它所含正方形個(gè)數(shù)x之間的關(guān)系可表示為y= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想用鏡子測(cè)量一棵松樹(shù)的高度,但樹(shù)旁有一條河,不能測(cè)量鏡子與樹(shù)之間的距離,于是小明兩次利用鏡子,第一次他把鏡子放在C點(diǎn),人在F點(diǎn)正好在鏡子中看見(jiàn)樹(shù)尖A;第二次把鏡子放在D點(diǎn),人在H點(diǎn)正好在鏡子中看到樹(shù)尖A.已知小明的眼睛距離地面的距離EF=1.68米,量得CD=10米,CF=1.2米,DH=3.6米,利用這些數(shù)據(jù)你能求出這棵松樹(shù)的高度嗎?試試看.(友情提示:∠ACB=∠ECF,∠ADF=∠GDH)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】背景閱讀:我們?cè)诮滩?/span>24.3已經(jīng)知道了直角三角形中銳角的三角函數(shù)的概念,類(lèi)似地,我們?cè)诘妊切沃薪⑦吔侵g的關(guān)系,即等腰三角形中底邊與腰的比叫做頂角的正對(duì),記作:sad.如圖1,在△ABC中,AB=AC,頂角A的正對(duì)記作:sadA,這時(shí)sadA== .
問(wèn)題解決:
(1)若頂角A=60°,求sadA的值;
(2)若90°<∠A<180°,求∠A的正對(duì)sadA的取值范圍;
合作交流:
(3)如圖2,在Rt△ABC中,∠ACB=90°,若sinA=,試求以AC為腰的等腰三角形中,頂角A的正對(duì)sadA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=k1x+1與雙曲線(xiàn)y=相交于P(1,m),Q(-2,-1)兩點(diǎn).
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線(xiàn)上三點(diǎn),且x1<x2<0<x3,請(qǐng)直接說(shuō)明y1,y2,y3的大小關(guān)系;
(3)觀察圖象,請(qǐng)直接寫(xiě)出不等式k1x+1>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)分別從甲地開(kāi)往乙地轎車(chē)的平均速度大于貨車(chē)的平均速度,如圖,線(xiàn)段OA、折線(xiàn)BCD分別表示兩車(chē)離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.
線(xiàn)段OA與折線(xiàn)BCD中,______表示貨車(chē)離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.
求線(xiàn)段CD的函數(shù)關(guān)系式;
貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過(guò)作輔助線(xiàn)構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過(guò)點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:b是最小的正整數(shù)且a、b滿(mǎn)足,試回答問(wèn)題.
(1)請(qǐng)直接寫(xiě)出a、b、c的值.
a= b= c= .
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:(請(qǐng)寫(xiě)出化簡(jiǎn)過(guò)程)
(3)在(1)(2)的條件下,若點(diǎn)D從A點(diǎn)開(kāi)始以每秒1的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)E從B點(diǎn)開(kāi)始以每秒2個(gè)單位長(zhǎng)度向右運(yùn)動(dòng),點(diǎn)F從C點(diǎn)開(kāi)始以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的t秒,請(qǐng)問(wèn),EF﹣DE的值是否隨著時(shí)間t的變化而變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com