【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
【答案】(1)證明見解析;(2)①證明見解析;②5.
【解析】
(1)由題意可知:∠CAB=∠GAF,由圓的性質(zhì)可知:∠CAB=∠OCA,所以∠OCA=∠GCE,從而可證明直線CG是⊙O的切線;
(2)①由于CB=CH,所以∠CBH=∠CHB,易證∠CBH=∠OCB,從而可證明△CBH∽△OBC;
②由△CBH∽△OBC可知:,所以HB=,由于BC=HC,所以OH+HC=4+BC,利用二次函數(shù)的性質(zhì)即可求出OH+HC的最大值.
(1)由題意可知:∠CAB=∠GAF,
∵AB是⊙O的直徑,
∴∠ACB=90°
∵OA=OC,
∴∠CAB=∠OCA,
∴∠OCA+∠OCB=90°,
∵∠GAF=∠GCE,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°,
∵OC是⊙O的半徑,
∴直線CG是⊙O的切線;
(2)①∵CB=CH,
∴∠CBH=∠CHB,
∵OB=OC,
∴∠CBH=∠OCB,
∴△CBH∽△OBC
②由△CBH∽△OBC可知:
∵AB=8,
∴BC2=HBOC=4HB,
∴HB=,
∴OH=OB-HB=4-
∵CB=CH,
∴OH+HC=4+BC,
當(dāng)∠BOC=90°,
此時BC=4
∵∠BOC<90°,
∴0<BC<4,
令BC=x則CH=x,BH=
當(dāng)x=2時,
∴OH+HC可取得最大值,最大值為5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,在邊長為的小正方形組成的網(wǎng)格中,的頂點、均在格點上,點在軸上,點的坐標(biāo)為.
點關(guān)于點中心對稱的點的坐標(biāo)為________;
繞點順時針旋轉(zhuǎn)后得到,那么點的坐標(biāo)為________;線段在旋轉(zhuǎn)過程中所掃過的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0.其中正確的命題是 .
A. ① ② B. ① ② ③ C. ③ ④ D. ① ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2018秒時,點P的坐標(biāo)是點( 。
A. (2017,1) B. (2018,0) C. (2017,﹣1) D. (2019,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點P是等邊△ABC內(nèi)一點,連接PC,以PC為邊作等邊三角形△PDC,連接PA,PB,BD.
(1)求證:∠APC=∠BDC;
(2)當(dāng)∠APC=150°時,試猜想△DPB的形狀,并說明理由;
(3)當(dāng)∠APB=100°且DB=PB,求∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,AD=8,沿BD折疊使點A到點A′處,DA′交BC于點F.
(1)求證:FB=FD;
(2)求證:CA′∥BD;
(3)求△DBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.
①若設(shè)購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?
②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項成績?nèi)缦拢▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學(xué)生甲 | 90 | 94 | 86 | 90 |
學(xué)生乙 | 94 | 82 | 93 | 91 |
(1)分別計算甲、乙成績的平均數(shù)和方差;
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點D,E,F分別是線段AD和AB上的動點,則BE+EF的最小值是___
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com