【題目】如圖,已知直線AB與x軸、y軸分別交于點A和點B,OA=4,且OA,OB長是關于x的方程x2﹣mx+12=0的兩實根,以OB為直徑的⊙M與AB交于C,連接CM,交x軸于點N,點D為OA的中點.
(1)求證:CD是⊙M的切線;
(2)求線段ON的長.
【答案】
(1)
證明:OA、OB長是關于x的方程x2﹣mx+12=0的兩實根,OA=4,則OA×OB=12,
得OB=3,⊙M的半徑為1.5;
∵BM=CM=1.5,
∴∠OBA=∠BCM.
連結OC,OB是⊙M的直徑,則∠ACO=90°,D為OA的中點,
∴OD=AD=CD=2,
∴∠OAC=∠ACD,
又∵∠OAC+∠OBA=90°,
∴∠BCM+∠ACD=90°,
∴∠NCD=90°,
∴CD是⊙M的切線.
(2)
解:∵∠CND=∠CND,∠NOM=∠NCD=90°,
∴△NOM∽△NCD,
∴ = ,即 = ,
∴NO= .
【解析】(1)先根據(jù)根與系數(shù)的關系求出OB的長,故可得出圓的半徑.連結OC,OB是⊙M的直徑,則∠ACO=90°,由D為OA的中點得出OD=AD=CD,故可得出∠OAC=∠ACD,再由∠OAC+∠OBA=90°得出∠BCM+∠ACD=90°,故∠NCD=90°,由此得出結論;(2)根據(jù)∠CND=∠CND,∠NOM=∠NCD=90°,得出△NOM∽△NCD,再由相似三角形的對應邊成比例即可得出結論.
【考點精析】關于本題考查的切線的性質定理,需要了解切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項式2x2+x+a有一個因式是(x+2),求另一個因式以及a 的值
解:設另一個因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個因式是(2x3),a 的值是6.
請你仿照以上做法解答下題:已知二次三項式3x2 10x m 有一個因式是(x+4),求另一個因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在同一直角坐標系中,反比例函數(shù)y= 與二次函數(shù)y=﹣x2+2x+c的圖象交于點A(﹣1,m).
(1)求m、c的值;
(2)求二次函數(shù)圖象的對稱軸和頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B、C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD與矩形EFGO在平面直角坐標系中,點B的坐標為(﹣4,4),點F的坐標為(2,1),若矩形ABCD和矩形EFGO是位似圖形,點P(點P在線段GC上)是位似中心,則點P的坐標為( )
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com