【題目】解方程:
(1)x2﹣6x﹣6=0
(2)2x2﹣7x+6=0.

【答案】
(1)解:x2﹣6x﹣6=0,

b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,

x= ,

x1=3+ ,x2=3﹣


(2)解:2x2﹣7x+6=0,

(2x﹣3)(x﹣2)=0,

2x﹣3=0,x﹣2=0,

x1= ,x2=2.


【解析】(1)求出b2﹣4ac的值,代入公式求出即可;(2)先分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用公式法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無(wú)實(shí)根便得知.有實(shí)根可套公式,沒(méi)有實(shí)根要告之.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離s(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)表示乙離A地的距離與時(shí)間關(guān)系的圖象是 (填);

(2)甲的速度是 km/h,乙的速度是 km/h;

(3)甲出發(fā)多少小時(shí)兩人恰好相距5km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘海輪位于燈塔P的北偏東60°方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的東南方向上的B處.這時(shí),海輪所在的B處距離燈塔P有多遠(yuǎn)?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,OA=4,且OA,OB長(zhǎng)是關(guān)于x的方程x2﹣mx+12=0的兩實(shí)根,以O(shè)B為直徑的⊙M與AB交于C,連接CM,交x軸于點(diǎn)N,點(diǎn)D為OA的中點(diǎn).

(1)求證:CD是⊙M的切線;
(2)求線段ON的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點(diǎn)C,DE三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知等邊△OAB的頂點(diǎn)A在反比例函數(shù)y= (x>0)圖象上,當(dāng)?shù)冗叀鱋AB的頂點(diǎn)B在坐標(biāo)軸上時(shí),求等邊△OAB頂點(diǎn)A的坐標(biāo)和△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,ABC是等腰直角三角形,∠BAC=90°,DE是經(jīng)過(guò)點(diǎn)A的直線,作BDDE,CEDE,

(1)求證:DE=BD+CE.

(2)如果是如圖2這個(gè)圖形,我們能得到什么結(jié)論?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)正六邊形的紙片,該紙片的邊長(zhǎng)為20cm,張萌想用一張圓形紙片將該正六邊形紙片完全覆蓋住,則圓形紙片的直徑不能小于 cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案