【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,在⊙O上取點D,連接CD,使得AC=CD,延長CD交直線AB于點E.
(1)求證:CD是⊙O的切線.
(2)若AC=2,AE=6.
①求⊙O的半徑.
②點M是優(yōu)弧上的一個動點(不與B,D重合),求MD,MB及弧BD圍成的陰影部分面積的最大值.
【答案】(1)見解析;(2)①⊙O的半徑為2,②π+2
【解析】
(1)連結(jié)OD,OC.根據(jù)SSS可證△CAO≌△CDO,得∠ODC=∠OAC=90°,則CD是 O的切線;
(2)①由(1)的結(jié)論可以得到CD=CA,再依據(jù)勾股定理可以求得 O的半徑為2;
②面積可看成兩部分,三角形DMB跟弧DB的面積,弧DB不變,三角形面積為底DB乘以高除以2,當(dāng)M運動到優(yōu)弧的中點時,陰影部分的面積最大,可求得最大值.
(1)證明:連接OD,OC,如圖.
∵AC是⊙O的切線,
∴∠CAB=90°,
在△CAO和△CDO中
,
∴△CAO≌△CDO.
∴∠CAO=∠CDO=90°,
∴CD⊥OD,
∴CD是⊙O的切線.
(2)解: ①∵AC=2,AE=6,
∴根據(jù)勾股定理得:CE=4,
又∵AC=CD,∴DE=2,
∴∠CEA=30°,
∴tan∠CEA==,
∴OD=2.
∴⊙O的半徑為2.
②∵圖中陰影部分的面積可看成兩部分,△DMB的面積和弓形DB的面積,
∵弧DB不變,∴三角形底邊DB不變,
當(dāng)M運動到優(yōu)弧的中點,高最大,即面積最大.
由(1)及第(2)①得:∠DOB=60°,當(dāng)M運動到優(yōu)弧的中點時,此時高經(jīng)過圓心且垂直于DB,所以高的值為2+,
又△DOB是等邊三角形,∴DB=OB=2,
∴S△DBM=×2×(2+)=2+,
又因為S弓形DB=S扇形ODB-S△ODB=-=-,
∴圖中陰影部分的面積為:S=S弓形DB+S△DBM=π+2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西皮影戲又稱“影戲”或“影子戲”,屬于傳統(tǒng)民間藝術(shù),皮影是一種以獸皮或紙板做成的人物剪影,在制作人物剪影中,給出下面4個條件:①;②;③;④.
(1)在上述四個條件中,選三個條件作為題設(shè),另一個作為結(jié)論,其中真命題有哪幾個?(用序號表示即可)
(2)請選擇(1)中的一個命題證明其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx﹣3的圖象經(jīng)過點A,且函數(shù)值y隨x的增大而增大,則點A的坐標(biāo)不可能是( 。
A.(﹣2,﹣4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數(shù)與相應(yīng)的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個二次函數(shù)圖象的頂點相同,開口大小相同,但開口方向相反,則稱這兩個二次函數(shù)為“對稱二次函數(shù)”.
(1)請寫出二次函數(shù)y=2(x-2)2+1的“對稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2-3x+1和y2=ax2+bx+c,若y1-y2與y1互為“對稱二次函數(shù)”,求函數(shù)y2的表達式,并求出當(dāng)-3≤x≤3時,y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點O,∠DAB=∠CBA,添加下列哪一個條件后,仍不能使△ADB≌△CBA的是( )
A.AD=BCB.∠ABD=∠BACC.OA=OBD.AC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△ABD都是等邊三角形,點E,F分別在BC,AC上,BE=CF,AE與BF交于點G.
(1)求∠AGF的度數(shù);
(2)連接DG,若AG=3、BG=2,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com