精英家教網 > 初中數學 > 題目詳情

【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.

(1)若AE=CF;

①求證:AF=BE,并求APB的度數;

②若AE=2,試求APAF的值;

(2)若AF=BE,當點E從點A運動到點C時,試求點P經過的路徑長.

【答案】(1)見解析;②12;(2)或3

【解析】

試題分析:(1)①證明ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長度,再用平行線分線段成比例定理或者三角形相似定理求得的比值,即可以得到答案.

(2)當點F靠近點C的時候點P的路徑是一段弧,由題目不難看出當E為AC的中點的時候,點P經過弧AB的中點,此時ABP為等腰三角形,繼而求得半徑和對應的圓心角的度數,求得答案.點F靠近點B時,點P的路徑就是過點B向AC做的垂線段的長度;

(1)①證明:∵△ABC為等邊三角形,

AB=AC,C=CAB=60°

AE=CF,

ABECAF中,

,

∴△ABE≌△CAF(SAS),

AF=BEABE=CAF

∵∠APE=BPF=ABP+BAP,

∴∠APE=BAP+CAF=60°

∴∠APB=180°APE=120°

∵∠C=APE=60°,PAE=CAF,∴△APE∽△ACF,

,即,所以APAF=12

(2)若AF=BE,有AE=BF或AE=CF兩種情況.

①當AE=CF時,點P的路徑是一段弧,由題目不難看出當E為AC的中點的時候,點P經過弧AB的中點,此時ABP為等腰三角形,且ABP=BAP=30°,

∴∠AOB=120°

AB=6,

OA=

點P的路徑是

②當AE=BF時,點P的路徑就是過點C向AB作的垂線段的長度;因為等邊三角形ABC的邊長為6,所以點P的路徑為:

所以,點P經過的路徑長為或3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個多邊形的內角和比它的外角的和的2倍還大180°,求這個多邊形的邊數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分解因式:2x3﹣8xy2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的三邊長分別為4,8a,則a的取值范圍是 ______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是( ).

A.3x2+4x2=7x4 B.2x33x3=6x3

C.x6÷x3=x2 D.(x24=x8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司銷售一種產品,每件產品的成本價、銷售價及月銷售量如表;為了獲取更大的利潤,公司決定投入一定的資金做促銷廣告,結果發(fā)現(xiàn):每月投入的廣告費為x萬元,產品的月銷售量是原銷售量的y倍,且y與x的函數圖象為如圖所示的一段拋物線.

成本價(元/件)

銷售價(元/件)

銷售量(萬件/月)

2

3

9

(1)求y與x的函數關系式為 ,自變量x的取值范圍為 ;

(2)已知利潤等于銷售總額減去成本費和廣告費,要使每月銷售利潤最大,問公司應投入多少廣告費?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列各式能用平方差公式計算的是( )

A. (2x+y)(2y+x) B. (x+1)(-x﹣1) C. (-x﹣y)(-x+y) D. (3x-y)(-3x+y)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=90°,D為AC邊上一點,連接BD,AFBD于點F,點E在BF上,連接AE,EAF=45°;

(1)如圖1,EMAB,分別交AF、AD于點Q、M,求證:FD=FQ;

(2)如圖2,連接CE,AKCE于點K,交DE于點H,DEC=30°,HF=,求EC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某種感冒病毒的直徑是0.00000012米,用科學記數法表示為 米.

查看答案和解析>>

同步練習冊答案