【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,D為AC邊上一點,連接BD,AF⊥BD于點F,點E在BF上,連接AE,∠EAF=45°;
(1)如圖1,EM∥AB,分別交AF、AD于點Q、M,求證:FD=FQ;
(2)如圖2,連接CE,AK⊥CE于點K,交DE于點H,∠DEC=30°,HF=,求EC的長.
【答案】(1)證明見解析(2)6
【解析】
試題分析:(1)證得△ADF≌EQF,即可證得結論;
(2)延長AF交CE于P,證得△ABH≌△APC得出AH=CP,證得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的長.
(1)證明:如圖1,∵∠EAF=45°,AF⊥BD,
∴AF=EF,
∵EM∥AB,∠BAC=90°,
∴∠AME=90°,
∴∠AQM+∠FAD=90°,
∵∠ADF+∠FAD=90°,
∴∠AQM=∠ADF,
∴∠EQF=∠ADF,
在△ADF和EQF中,
,
∴△ADF≌EQF(AAS),
∴FD=FQ;
(2)解:如圖2,延長AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH與△APC中,
,
∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF與△EPF中,
,
∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×=3,
∴EC=2AH=6.
科目:初中數(shù)學 來源: 題型:
【題目】已知在直角坐標平面內,拋物線y=x2+bx+c經過點A(2,0)、B(0,6).
(1)求拋物線的表達式;
(2)拋物線向下平移幾個單位后經過點(4,0)?請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當點E從點A運動到點C時,試求點P經過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線BC與x軸、y軸分別交于B、C兩點,直線AD與x軸,y軸分別交于A、D兩點,其中A(﹣3,0)、B(4,0),C(0,4)并且AD⊥BC于點E
(1)求點D的坐標;
(2)點P從點A出發(fā)沿x軸正方向勻速運動,運動速度為每秒2個單位的長度,過點P作PM⊥x軸分別交直線AD、BC于點M、N,設點P的運動時間為t(秒),MN=m(m>0),請用含t的式子表示m,并說明理由(并直接寫出t的取值范圍);
(3)在(2)的條件下,EK⊥x軸于點K,連接MK,作KQ⊥MK交直線BC于點Q,當S△KQB=時,求此時的P值及點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD=AE,∠BDE=∠CED,∠ABD=∠ACE.
(1)求證:AB=AC;
(2)若∠DAE=2∠ABC=140°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=90°,以AB為直徑作⊙O,BD∥OC交⊙O于D點,CD與AB的延長線交于點E.
(1)求證:CD是⊙O的切線;
(2)若BE=2,DE=4,求CD的長;
(3)在(2)的條件下,如圖2,AD交BC、OC分別于F、G,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“遼寧號”航母是中國海軍航空母艦的首艦,標準排水量57000噸,滿載排水量67500噸.數(shù)據(jù)67500用科學記數(shù)法表示為( )
A. 675×102 B. 67.5×103 C. 6.75×104 D. 6.75×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. “打開電視機,它正在播廣告”是必然事件
B. “一個不透明的袋中裝有8個紅球,從中摸出一個球是紅球”是隨機事件
C. 為了了解我市今年夏季家電市場中空調的質量,不宜采用普查的調查方式進行
D. 銷售某種品牌的涼鞋,銷售商最感興趣的是該品牌涼鞋的尺碼的平均數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各點,在一次函數(shù)y=2x+6的圖象上的是( )
A. (-5,4) B. (-4,1) C. (4,20) D. (-3, 0)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com