【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__

【答案】

【解析】依據(jù)DCM為直角三角形,需要分兩種情況進(jìn)行討論:當(dāng)∠CDM=90°時(shí),CDM是直角三角形;當(dāng)∠CMD=90°時(shí),CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長(zhǎng).

分兩種情況:

①如圖,當(dāng)∠CDM=90°時(shí),CDM是直角三角形,

∵在RtABC中,∠B=90°,A=60°,AC=2+4,

∴∠C=30°,AB=AC=+2,

由折疊可得,∠MDN=A=60°,

∴∠BDN=30°

BN=DN=AN,

BN=AB=,

AN=2BN=,

∵∠DNB=60°,

∴∠ANM=DNM=60°,

∴∠AMN=60°,

AN=MN=

②如圖,當(dāng)∠CMD=90°時(shí),CDM是直角三角形,

由題可得,∠CDM=60°,A=MDN=60°,

∴∠BDN=60°BND=30°,

BD=DN=AN,BN=BD,

又∵AB=+2,

AN=2,BN=,

過(guò)NNHAMH,則∠ANH=30°,

AH=AN=1,HN=

由折疊可得,∠AMN=DMN=45°

∴△MNH是等腰直角三角形,

HM=HN=,

MN=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BC30cm,AC40cm,點(diǎn)D在線段AB上從點(diǎn)B出發(fā),以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為ts).

1)用含t的代數(shù)式表示BD的長(zhǎng);

2)求AB的長(zhǎng);

3)求AB邊上的高;

4)當(dāng)BCD為等腰三角形時(shí),求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段CD垂直平分線段AB,垂足為H,CA的延長(zhǎng)線交BD的延長(zhǎng)線于E,CB的延長(zhǎng)線交AD的延長(zhǎng)線于F

1)求證:DEDF;

2)若AEAB,∠E22.5°,則直接寫出圖中內(nèi)角含有45°等腰三角形(寫出3個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強(qiáng)用所學(xué)知識(shí)對(duì)一條筆直公路上的車輛進(jìn)行測(cè)速,如圖所示,觀測(cè)點(diǎn)C到公路的距離CD=200m,檢測(cè)路段的起點(diǎn)A位于點(diǎn)C的南偏東60°方向上,終點(diǎn)B位于點(diǎn)C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測(cè)得此車由A處行駛到B處的時(shí)間為10s.問(wèn)此車是否超過(guò)了該路段16m/s的限制速度?(觀測(cè)點(diǎn)C離地面的距離忽略不計(jì),參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名運(yùn)動(dòng)員進(jìn)行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

1)選手甲的成績(jī)的中位數(shù)是   分;選手乙的成績(jī)的眾數(shù)是   分;

2)計(jì)算選手甲的平均成績(jī)和方差;

3)已知選手乙的成績(jī)的方差是15,則成績(jī)較穩(wěn)定的是哪位選手?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.

(以上材料來(lái)源于《古證復(fù)原的原則》《吳文俊與中國(guó)數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)

請(qǐng)根據(jù)上圖完成這個(gè)推論的證明過(guò)程.

證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),

S矩形EBMF=S△ABC-(____________________________).

易知,S△ADC=S△ABC,________________________________________________________

可得S矩形NFGD=S矩形EBMF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等腰三角形,ABAC,點(diǎn)DAB上一點(diǎn),過(guò)點(diǎn)DDEBCBC于點(diǎn)E,交CA延長(zhǎng)線于點(diǎn)F

1)證明:ADF是等腰三角形;

2)若∠B60°,BD4,AD2,求EC的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.AC、BC兩邊垂直平分線的交點(diǎn)處

C.ACBC兩邊高線的交點(diǎn)處

D.ACBC兩邊中線的交點(diǎn)處

查看答案和解析>>

同步練習(xí)冊(cè)答案