【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.

(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)

請根據(jù)上圖完成這個推論的證明過程.

證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),

S矩形EBMF=S△ABC-(____________________________).

易知,S△ADC=S△ABC,____________________________,____________________________

可得S矩形NFGD=S矩形EBMF.

【答案】S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC

【解析】

根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.

S矩形NFGD=SADC-(SANF+SFGC),S矩形EBMF=SABC-( SANF+SFCM).

易知,SADC=SABC,SANF=SAEFSFGC=SFMC,

可得SNFGD=S矩形EBMF

故答案分別為 SAEF,SFCM,SANFSAEF,SFGCSFMC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七個邊長為1的正方形按如圖所示的方式放置在平面直角坐標(biāo)系中,直線l經(jīng)過點A4,4)和點B,且將這七個正方形的面積分成相等的兩部分,則直線l的函數(shù)表達(dá)式是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答下列問題:

神奇的等式

當(dāng)a≠b時,一般來說會有a2+b≠a+b2,然而當(dāng)ab是特殊的分?jǐn)?shù)時,這個等式卻是成立的例如:

2+=+,(2+=+,(2+=+(2,…(2+=+(2,…

(1)特例驗證:

請再寫出一個具有上述特征的等式:   

(2)猜想結(jié)論:

n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為:   ;

(3)證明推廣:

(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;

②等式(2+=+(2(m,n為任意實數(shù),且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數(shù));若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.

(1)求證:四邊形ABCD是菱形.

(2)若AC=8,AB=5,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點A的對應(yīng)點D恰好落在線段BC上,當(dāng)DCM為直角三角形時,折痕MN的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BDCE,將線段AE沿AC翻折,得到線段AM,連結(jié)EMAC于點N,連結(jié)DMCM.以下說法:①ADAM,②DEME,③CNEC,④SABDSACM中,正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分線 AD 與邊 BC 的垂直平分線 DG 交于點 D ,過點 D 分別作 DEAB ,DFAC ,垂足分別為 E F,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:E在△ABCAC邊的延長線上,D點在AB邊上,DEBC于點F,DF=EF,BD=CE。求證:△ABC是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案