【題目】如圖,已知平行四邊形ABCD中,AB=BC,BC=10,∠BCD=60°,兩頂點B、D分別在平面直角坐標系的y軸、x軸的正半軸上滑動,連接OA,則OA的長的最小值是_____

【答案】

【解析】

利用鄰邊相等的平行四邊形即菱形的性質(zhì)以及等邊三角形的性質(zhì)確定A點位置,進而求出AO的長.

解:如圖所示:過點AAEBD于點E,

當點A,O,E在一條直線上,此時AO最短.

∵平行四邊形ABCD中,AB=BC,BC=10,∠BCD=60°,

AB=AD=CD=BC=10,∠BAD=BCD=60°,

∴△ABD是等邊三角形,

AE過點OEBD中點,則此時

AO的最小值為:AO=AEEO=ABsin60°﹣×BD=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸交于點B,與y軸交于點C,拋物線經(jīng)過B、C兩點,且與x軸交于另一點A

1)求拋物線的解析式.

2)點P是線段BC下方的拋物線上的動點(不與點B、C重合),過PPDy軸交BC于點D,以PD為直徑的圓交BC于另一點E,求DE的最大值及此時點P的坐標;

3)當(2)中的DE取最大值時,將PDE繞點D旋轉(zhuǎn),當點P落在坐標軸上時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的頂點坐標分別為A(30),B(0,4),C(-3,0),動點M,N同時從A點出發(fā),N沿A→C,M沿折線A→B→C,均以每秒1個單位長度的速度移動,當一個動點到達終點C時,另一個動點也隨之停止移動,移動時間記為t秒.連接MN

1)移動過程中,將△ABC沿直線MN折疊,若點A恰好落在BC邊上的點D處,求此時t的值.

2)當點M,N移動時,記△ABC在直線MN右側(cè)部分的面積為S,求S關(guān)于時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的中線,那么下列結(jié)論錯誤的是(

A.A+DCB=90°B.ADC= 2BC. AB=2CDD. BC=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為 1 個單位長度的小正方形組成的網(wǎng)格中,建立平面直角坐標系 A(1,7), B(6,3), C(2,3)

1)將ABC 繞格點 P(1,1) 順時針旋轉(zhuǎn)90,得到 ABC 畫出 ABC,并寫出下列各點坐標: A(   ), B(    , ) C( , );

2)找格點 M ,連CM ,使CM AB ,則點 M 的坐標為( )

3)找格點 N ,連 BN ,使 BN AC ,則點 N 的坐標為( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B4,m)兩點,拋物線y=ax2+bx+cy軸于點C0,﹣),交x軸正半軸于D點,拋物線的頂點為M

1)求拋物線的解析式;

2)設(shè)點P為直線AB下方的拋物線上一動點,當△PAB的面積最大時,求△PAB的面積及點P的坐標;

3)若點Qx軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當△QMN與△MAD相似時,求N點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā)相向而行,并以各自的速度勻速行駛,兩車在相遇之前同時改變了一次速度,并同時到達各自目的地,兩車距B地的路程ykm)與出發(fā)時間xh)之間的函數(shù)圖象如圖所示.

1)分別求甲、乙兩車改變速度后yx之間的函數(shù)關(guān)系式;

2)若m1,分別求甲、乙兩車改變速度之前的速度;

3)如果兩車改變速度時兩車相距90km,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位要將一份宣傳資料進行批量印刷.在甲印刷廠,在收取100元制版費的基礎(chǔ)上,每份收費0.5元;在乙印刷廠,在收取40元側(cè)版費的基礎(chǔ)上,每份收費0.7元.設(shè)該單位要印刷此宣傳資料份(為正整數(shù)).

)根據(jù)題意,填寫下表:

印劇數(shù)量(份)

150

250

350

450

甲印刷廠收費(元)

175

275

乙印刷廠收費(元)

145

215

355

)設(shè)在甲印刷廠收費元,在乙印刷廠收費元,分別寫出關(guān)于的函數(shù)解析式;

)當時,在哪家印刷廠花費少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】筆直的海岸線上依次有AB,C三個港口,甲船從A港口出發(fā),沿海岸線勻速駛向C港口,1小時后乙船從B港口出發(fā),沿海岸線勻速駛向A港口,兩船同時到達目的地.甲船的速度是乙船的1.25倍,甲、乙兩船與B港口的距離ykm)與甲船行駛時間xh)之間的函數(shù)關(guān)系如圖所示.給出下列說法:①A,B港口相距400km;②甲船的速度為100km/h;③B,C港口相距200km;④乙船出發(fā)4h時,兩船相距220km.其中正確的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案