【題目】如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.
(1)求拋物線的解析式;
(2)設(shè)點P為直線AB下方的拋物線上一動點,當(dāng)△PAB的面積最大時,求△PAB的面積及點P的坐標(biāo);
(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當(dāng)△QMN與△MAD相似時,求N點的坐標(biāo).
【答案】(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).
【解析】
(1)將點代入,求出,將點代入,即可求函數(shù)解析式; (2)如圖,過作軸,交于,求出的解析式,設(shè),表示點坐標(biāo),表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)求最值即可, (3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設(shè) ①當(dāng)MQ⊥QN時,N(3,0); ②當(dāng)QN⊥MN時,過點N作NR⊥x軸,過點M作MS⊥RN交于點S,由(AAS),建立方程求解; ③當(dāng)QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作R∥x軸,與過M點的垂線分別交于點S、R;可證△MQR≌△QNS(AAS),建立方程求解; ④當(dāng)MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,過點N作x軸的平行線,與兩垂線交于點R、S;可證△MNR≌△NQS(AAS),建立方程求解.
解:(1)將點代入,∴,
將點代入,
解得:,
∴函數(shù)解析式為;
(2)如圖,過作軸,交于,設(shè)為,
因為:所以:
,解得:,
所以直線AB為:,設(shè),則,
所以:,
所以:
,
當(dāng),,
此時:.
(3)∵,
∴,
∴△MAD是等腰直角三角形.
∵△QMN與△MAD相似,∴△QMN是等腰直角三角形,
設(shè)
①如圖1,當(dāng)MQ⊥QN時,此時與重合,N(3,0);
②如圖2,當(dāng)QN⊥MN時,過點N作NR⊥x軸于,過點M作MS⊥RN交于點S.
∵QN=MN,∠QNM=90°,∴(AAS),
∴,
∴ ,,∴,∴;
③如圖3,當(dāng)QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作 R∥x軸,與過點的垂線分別交于點S、R;
∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,
,∴,∴t=5,(舍去負(fù)根)∴N(5,6);
④如圖4,當(dāng)MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,
過點N作x軸的平行線,與兩垂線交于點R、S;
∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,
∴,∴.
,∴,∴;
綜上所述:或或N(5,6)或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020的寒假是一個特殊的假期.由于“新型冠狀肺炎病毒”影響,學(xué)校的開學(xué)日期不斷延后,在這期間某中學(xué)在學(xué)校微信公眾號上積極鼓勵學(xué)生靜在家中沉下心來參加“靜讀名著”活動,活動以讀名著的本書多少設(shè)為A,B,C,D,E五個等級,(本數(shù)依次為5,4,3,2,1),該校八(3)班全體學(xué)生參加了這次靜在家中沉下心來讀名著活動,芳芳同學(xué)通過調(diào)查并將這次讀書閱讀本數(shù)的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:
(1)該校八(3)班共有______學(xué)生;
(2)扇形統(tǒng)計圖中B等級所對應(yīng)扇形的圓心角等于______度;
(3)補全條形統(tǒng)計圖;
(4)若該校有學(xué)生2500人讀名著的本書在B、C級的人數(shù)一共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,頂點為A的拋物線與x軸交于B、C兩點,與y軸交于點D,已知A(1,4),B(3,0).
(1)求拋物線對應(yīng)的二次函數(shù)表達(dá)式;
(2)探究:如圖1,連接OA,作DE∥OA交BA的延長線于點E,連接OE交AD于點F,M是BE的中點,則OM是否將四邊形OBAD分成面積相等的兩部分?請說明理由;
(3)應(yīng)用:如圖2,P(m,n)是拋物線在第四象限的圖象上的點,且m+n=﹣1,連接PA、PC,在線段PC上確定一點M,使AN平分四邊形ADCP的面積,求點N的坐標(biāo).提示:若點A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),則線段AB的中點坐標(biāo)為(,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新知探究)新定義:平面內(nèi)兩定點 A, B ,所有滿足 k ( k 為定值)的 P 點形成的圖形是圓,我們把這種圓稱之為“阿氏圓”,
(問題解決)如圖,在ABC 中,CB 4 , AB 2AC ,則ABC 面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AB=BC,BC=10,∠BCD=60°,兩頂點B、D分別在平面直角坐標(biāo)系的y軸、x軸的正半軸上滑動,連接OA,則OA的長的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市九年級學(xué)生身體素質(zhì)情況,從全市九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 °,把圖2條形統(tǒng)計圖補充完整;
(3)全市九年級有學(xué)生6200名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一列數(shù)a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且滿足任意相鄰三個數(shù)的和為常數(shù),則a1+a2+a3+…+a98+a99+a100的值為( )
A.1985B.-1985C.2019D.-2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級同學(xué)最喜歡看哪一類課外書?某校隨機抽取七年級部分同學(xué)對此進(jìn)行問卷調(diào)査(每人只選擇一種最喜歡的書籍類型).如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅統(tǒng)計圖(不完整).請根據(jù)統(tǒng)計圖信息,解答下列問題:
(1)一共有多少名學(xué)生參與了本次問卷調(diào)查;
(2)補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中“其他”所在扇形的圓心角度數(shù);
(3)若該年級有400名學(xué)生,請你估計該年級喜歡“科普常識”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點
中的兩個多邊形:
根據(jù)圖中提供的信息填表:
格點多邊形各邊上的格點的個數(shù) | 格點邊多邊形內(nèi)部的格點個數(shù) | 格點多邊形的面積 | |
多邊形1 | 8 | 1 | |
多邊形2 | 7 | 3 | |
… | … | … | … |
一般格點多邊形 | a | b | S |
則S與a、b之間的關(guān)系為S= (用含a、b的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com