【題目】如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣10),B4m)兩點,拋物線y=ax2+bx+cy軸于點C0,﹣),交x軸正半軸于D點,拋物線的頂點為M

1)求拋物線的解析式;

2)設(shè)點P為直線AB下方的拋物線上一動點,當(dāng)△PAB的面積最大時,求△PAB的面積及點P的坐標(biāo);

3)若點Qx軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當(dāng)△QMN與△MAD相似時,求N點的坐標(biāo).

【答案】1;(2,P,);(3N3,0)或N2+1+)或N5,6)或N,1).

【解析】

1)將點代入,求出,將點代入,即可求函數(shù)解析式; 2)如圖,過軸,交,求出的解析式,設(shè),表示點坐標(biāo),表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)求最值即可, 3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設(shè) ①當(dāng)MQQN時,N3,0); ②當(dāng)QNMN時,過點NNRx軸,過點MMSRN交于點S,由AAS),建立方程求解; ③當(dāng)QNMQ時,過點Qx軸的垂線,過點NNSx軸,過點Rx軸,與過M點的垂線分別交于點SR;可證△MQR≌△QNSAAS),建立方程求解; ④當(dāng)MNNQ時,過點MMRx軸,過點QQSx軸,過點Nx軸的平行線,與兩垂線交于點R、S;可證△MNR≌△NQSAAS),建立方程求解.

解:(1)將點代入,∴

將點代入,

解得:,

∴函數(shù)解析式為;

2)如圖,過軸,交,設(shè),

因為:所以:

,解得:,

所以直線AB為:,設(shè),則,

所以:,

所以:

當(dāng),

此時:

3)∵,

∴△MAD是等腰直角三角形.

∵△QMN與△MAD相似,∴△QMN是等腰直角三角形,

設(shè)

如圖1,當(dāng)MQQN時,此時重合,N3,0);

如圖2,當(dāng)QNMN時,過點NNRx軸于,過點MMSRN交于點S

QN=MN,∠QNM=90°,∴AAS),

,

,∴,∴;

如圖3,當(dāng)QNMQ時,過點Qx軸的垂線,過點NNSx軸,過點 Rx軸,與過點的垂線分別交于點S、R;

QN=MQ,∠MQN=90°,∴△MQR≌△QNSAAS),,

,∴,∴t=5,(舍去負(fù)根)∴N5,6);

如圖4,當(dāng)MNNQ時,過點MMRx軸,過點QQSx軸,

過點Nx軸的平行線,與兩垂線交于點RS;

QN=MN,∠MNQ=90°,∴△MNR≌△NQSAAS),∴SQ=RN

,∴

,∴,∴

綜上所述:N5,6)或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020的寒假是一個特殊的假期.由于“新型冠狀肺炎病毒”影響,學(xué)校的開學(xué)日期不斷延后,在這期間某中學(xué)在學(xué)校微信公眾號上積極鼓勵學(xué)生靜在家中沉下心來參加“靜讀名著”活動,活動以讀名著的本書多少設(shè)為AB,C,D,E五個等級,(本數(shù)依次為54,32,1),該校八(3)班全體學(xué)生參加了這次靜在家中沉下心來讀名著活動,芳芳同學(xué)通過調(diào)查并將這次讀書閱讀本數(shù)的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:

1)該校八(3)班共有______學(xué)生;

2)扇形統(tǒng)計圖中B等級所對應(yīng)扇形的圓心角等于______度;

3)補全條形統(tǒng)計圖;

4)若該校有學(xué)生2500人讀名著的本書在BC級的人數(shù)一共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,頂點為A的拋物線與x軸交于B、C兩點,與y軸交于點D,已知A(1,4)B(3,0)

(1)求拋物線對應(yīng)的二次函數(shù)表達(dá)式;

(2)探究:如圖1,連接OA,作DE∥OABA的延長線于點E,連接OEAD于點FMBE的中點,則OM是否將四邊形OBAD分成面積相等的兩部分?請說明理由;

(3)應(yīng)用:如圖2,P(m,n)是拋物線在第四象限的圖象上的點,且m+n=﹣1,連接PAPC,在線段PC上確定一點M,使AN平分四邊形ADCP的面積,求點N的坐標(biāo).提示:若點A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),則線段AB的中點坐標(biāo)為(,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(新知探究)新定義:平面內(nèi)兩定點 A, B ,所有滿足 k ( k 為定值) P 點形成的圖形是圓,我們把這種圓稱之為“阿氏圓”,

(問題解決)如圖,在ABC 中,CB 4 , AB 2AC ,則ABC 面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AB=BC,BC=10,∠BCD=60°,兩頂點BD分別在平面直角坐標(biāo)系的y軸、x軸的正半軸上滑動,連接OA,則OA的長的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解我市九年級學(xué)生身體素質(zhì)情況,從全市九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生人數(shù)是   ;

2)圖1中∠α的度數(shù)是   °,把圖2條形統(tǒng)計圖補充完整;

3)全市九年級有學(xué)生6200名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一列數(shù)a1,a2a3,,a98a99,a100,其中a32020,a7=-2018,a98=-1,且滿足任意相鄰三個數(shù)的和為常數(shù),則a1a2a3a98a99a100的值為( )

A.1985B.1985C.2019D.2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級同學(xué)最喜歡看哪一類課外書?某校隨機抽取七年級部分同學(xué)對此進(jìn)行問卷調(diào)査(每人只選擇一種最喜歡的書籍類型).如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅統(tǒng)計圖(不完整).請根據(jù)統(tǒng)計圖信息,解答下列問題:

1)一共有多少名學(xué)生參與了本次問卷調(diào)查;

2)補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中其他所在扇形的圓心角度數(shù);

3)若該年級有400名學(xué)生,請你估計該年級喜歡科普常識的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則(史稱皮克公式).

小明認(rèn)真研究了皮克公式,并受此啟發(fā)對正三角開形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點

中的兩個多邊形:

根據(jù)圖中提供的信息填表:


格點多邊形各邊上的格點的個數(shù)

格點邊多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1


多邊形2

7

3






一般格點多邊形

a

b

S

Sa、b之間的關(guān)系為S=   (用含ab的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案