【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點(diǎn),且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半與AB=CD可得四邊形EFGH是菱形;
然后根據(jù)菱形的對(duì)角線互相垂直平分,并且平分每一組對(duì)角的性質(zhì)對(duì)各小題進(jìn)行判斷,從而找出正確的個(gè)數(shù)即可得到答案.
∵E、F、G、H分別是BD、BC、AC、AD的中點(diǎn),
∴EF=CD,F(xiàn)G=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四邊形EFGH是菱形,
∴①EG⊥FH,正確;
②四邊形EFGH是菱形,正確;
③HF平分∠EHG,正確;
④當(dāng)AD∥BC,如圖所示:E,G分別為BD,AC中點(diǎn),
∴連接CD,延長(zhǎng)EG到CD上一點(diǎn)N,
如下圖所示:
∴EN=BC,GN=AD,
∴EG= (BC-AD),只有AD∥BC時(shí)才可以成立,而本題AD與BC很顯然不平行,故本小題錯(cuò)誤;
故①②③對(duì).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m-1)x-2m2+m=0(m為實(shí)數(shù))有兩個(gè)實(shí)數(shù)根x1、x2.
(1)當(dāng)m為何值時(shí),x1=x2.
(2)若x12+x22,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過(guò)km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方m處,過(guò)了2s后,測(cè)得小汽車與車速檢測(cè)儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為22米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為14米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃,有以下兩種圍法.
(1)如圖1,設(shè)花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達(dá)式,并確定x的取值范圍;
(2)如圖2,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料造了寬為1米的兩個(gè)小門,設(shè)花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達(dá)式及S的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形中,,
(1)如圖(a)所示,、分別是和的角平分線,判斷與的位置關(guān)系,并證明.
(2)如圖(b)所示,、分別是和的角平分線,直接寫(xiě)出與的位置關(guān)系.
(3)如圖(c)所示,、分別是和的角平分線,判斷與的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩張完全相同的矩形紙片、按如圖方式放置,為重合的對(duì)角線.重疊部分為四邊形,
試判斷四邊形為何種特殊的四邊形,并說(shuō)明理由;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=8cm,BC=16 cm.點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B以2 cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿BC向點(diǎn)C以4 cm/s的速度運(yùn)動(dòng).如果點(diǎn)P,Q分別從點(diǎn)A,B同時(shí)出發(fā),則_____________秒鐘后△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,是的平分線,點(diǎn)在上,,且點(diǎn)到的距離為,過(guò)點(diǎn)作,,垂足分別為,,易得到結(jié)論: .
(1)把圖中的繞點(diǎn)旋轉(zhuǎn),當(dāng)與不垂直時(shí)(如圖),上述結(jié)論是否成立?并說(shuō)明理由.
(2)把圖中的繞點(diǎn)旋轉(zhuǎn),當(dāng)與的反向延長(zhǎng)線相交于點(diǎn)時(shí):
①請(qǐng)?jiān)趫D中畫(huà)出圖形;
②上述結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)直接寫(xiě)出線段,之間的的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com