【題目】如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,有以下兩種圍法.
(1)如圖1,設(shè)花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達式,并確定x的取值范圍;
(2)如圖2,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門,設(shè)花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達式及S的最大值?
【答案】(1)y=﹣3x2+22x(≤x<);(2)S=﹣3a2+24a(≤a<8),當(dāng)a=4時,S最大值為48.
【解析】
(1)設(shè)花圃的寬AB為x米,由矩形面積y=長×寬,列出函數(shù)解析式;
(2)由在BC上用其他材料造了寬為1米的兩個小門,故長變?yōu)?/span>22﹣3a+2,再列出函數(shù)解析式.
(1)設(shè)花圃的寬AB為x米,面積為y米2,y=ABBC=x(22﹣3x)
=﹣3x2+22x.
根據(jù)題意可得:,解得:≤x<,即x的取值范圍:≤x<;
(2)設(shè)花圃的寬AB為a米,面積為S米2,由題意可得:S=a(22﹣3a+2)
=﹣3a2+24a=﹣3(a﹣4)2+48.
根據(jù)題意可得:,解得:≤a<8,即x的取值范圍:≤a<8,當(dāng)a=4時,S最大值為48.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種原料,運往A地和B地銷售.如表記錄的是該產(chǎn)品運往A地和B地供應(yīng)量y1(kg)、y2(kg)與銷售價格x(元)之間的關(guān)系:
銷售價格x(元) | 100 | 150 | 200 | 300 |
運往A地y1(kg) | 300 | 250 | 200 | 100 |
運往B地y2(kg) | 450 | 350 | 250 | n |
(1)請認真分析上表中所給數(shù)據(jù),用你所學(xué)過的函數(shù)來表示其變化規(guī)律,并驗證你的猜想,分別求出y1與x、y2與x的函數(shù)關(guān)系式;
(2)用你求出的函數(shù)關(guān)系式完成上表,直接寫出n= ;
(3)直接寫出銷售價格在 元時,該產(chǎn)品運往A地的供應(yīng)量等于運往B地的供應(yīng)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線l上擺放著三個三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設(shè)圖中三個四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線:,點的坐標(biāo)為,過點作軸的垂線交直線于點,以原點為圓心,長為半徑畫弧交軸負半軸于點;再過點作軸的垂線交直線于點,以原點為圓心,長為半徑畫弧交軸負半軸于點;…,按此作法進行下去.點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一個凸多邊形除一個內(nèi)角外,其余各角之和為2750°,這個多邊形的邊數(shù)為__________,除去的這個內(nèi)角的度數(shù)為__________.
(2)一個多邊形截去一個角后,形成另一個多邊形的內(nèi)角和是1620°,則原來多邊形的邊數(shù)是____.
(3)一個凸多邊形的某一個內(nèi)角的外角與其余內(nèi)角的和恰為500°,那么這個多邊形的邊數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以點為頂點作等腰,等腰,其中,如圖1所示放置,使得一直角邊重合,連接、.
(1)試判斷、的數(shù)量關(guān)系,并說明理由;
(2)延長交于點試求的度數(shù);
(3)把兩個等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD≌△EBC,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)如圖1,當(dāng)A,B,E三點在同一直線上時,判斷AC與CN數(shù)量關(guān)系為________;
(2)將圖1中△BCE繞點B逆時針旋轉(zhuǎn)到圖2位置時,(1)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由;
(3)將圖1中△BCE繞點B逆時針旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中△CAN能否為等腰直角三角形?若能,直接寫出旋轉(zhuǎn)角度;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com