【題目】已知反比例函數(shù),下列結(jié)論中不正確的是(

A.圖象必經(jīng)過點 B. 的增大而增大

C.圖象在第二,四象限內(nèi)D.,則

【答案】B

【解析】

根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特點:橫縱坐標(biāo)之積=k,可以判斷出A的正誤;根據(jù)反比例函數(shù)的性質(zhì):k0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)yx的增大而增大可判斷出B、CD的正誤.

A、反比例函數(shù),所過的點的橫縱坐標(biāo)之積=6,此結(jié)論正確,故此選項不符合題意;

B、反比例函數(shù),在每一象限內(nèi)yx的增大而增大,此結(jié)論不正確,故此選項符合題意;

C、反比例函數(shù),圖象在第二、四象限內(nèi),此結(jié)論正確,故此選項不合題意;

D、反比例函數(shù),當(dāng)x1時圖象在第四象限,yx的增大而增大,故x1時,6y0;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,C、D上兩點,且,垂足為F,直線CFAB的延長線于點E,連接AC

1)判斷EF的位置關(guān)系,并說明理由:

2)若,的半徑為4,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+15000x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+13000x2≤20x2為整數(shù)).

1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進(jìn)貨方案?

2)該商家分別以1760/臺和1700/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點P是線段AD上任意一點,點QBC上一點,且AP=CQ.

(1)求證:BP=DQ;

(2)若AB=4,且當(dāng)PD=5時四邊形PBQD為菱形.求AD為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,,的平分線相交于點E,過點EAC于點F,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A-1,3),B-2,1),C-31).

1畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出A1點的坐標(biāo)及sin∠B1C1A1的值

2以原點O為位似中心,位似比為12y軸的左側(cè),畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標(biāo);

3若點D為線段BC的中點,直接寫出經(jīng)過2的變化后點D的對應(yīng)點D2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線yx與雙曲線yk0)交于A、B兩點,A點的橫坐標(biāo)為3,則下列結(jié)論:k6A點與B點關(guān)于原點O中心對稱;關(guān)于x的不等式0的解集為x<﹣30x3;若雙曲線yk0)上有一點C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個數(shù)(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,EAB上,都為等腰直角三角形,,連接DB,以DE、DB為邊作平行四邊形DBFE,連接FCDC

1)求證:;

2)將圖①中A點順時針旋轉(zhuǎn),其它條件不變,如圖②,(1)中的結(jié)論是否成立?說明理由.

3)將圖①中的A點順時針旋轉(zhuǎn),其它條件不變,當(dāng)四邊形DBFE為矩形時,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案