【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

【答案】D

【解析】

設(shè)這塊圓柱形木材的半徑為r.在RtADO中,AD5,ODr1,OAr,則有r252+(r12,解方程即可.

解:如圖:設(shè)這塊圓柱形木材的半徑為r

由題意得:OCAB,尺=10寸,則AD5寸,

RtADO中,AD5,ODr1,OAr

則有r252+(r12,

解得r13,

∴這塊圓柱形木材的直徑為26寸,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,平分

1)如圖1,求證:;

2)如圖2,,弦于點,若,求證:;

3)如圖3,在(2)的條件下,點上一點,連接,,若,,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于AB兩點(點B在點A的左側(cè)),與y軸交于點C

1)求點A,BC的坐標;

2)求證:ABC為直角三角形;

3)如圖,動點E,F同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當(dāng)點F停止運動時,點E隨之停止運動.設(shè)運動時間為t秒,連結(jié)EF,將AEF沿EF翻折,使點A落在點D處,得到DEF.當(dāng)點FAC上時,是否存在某一時刻t,使得DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于點DPAB延長線上一點,∠PCD=2∠BAC

1求證:CP為⊙O的切線;

2BP=1,CP=,求 ⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,DE分別是BCCB延長線上的點,且,連接AD、AE,BM、CN分別是△ABE和△ACD的高線,垂足分別為MN, BG、CH分別是∠ABE和∠ACD的平分線,分別交AE、AD于點GH.

證明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(﹣4,﹣2)和Ba,4.

1)求一次函數(shù)和反比例函數(shù)的表達式及點B的坐標;

2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦BC=4cm,F是弦BC的中點,∠ABC=60°.若動點E1cm/s的速度從A點出發(fā)在AB上沿著A→B運動,設(shè)運動時間為t(s)(0≤t8),連接EF,當(dāng)△BEF是直角三角形時,t(s)的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),下列結(jié)論中不正確的是(

A.圖象必經(jīng)過點 B. 的增大而增大

C.圖象在第二,四象限內(nèi)D.,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點在反比例函數(shù)的圖象上,,軸于點C

求反比例函數(shù)的表達式;

的面積;

若將繞點B按逆時針方向旋轉(zhuǎn)得到O、A的對應(yīng)點分別為,點是否在反比例函數(shù)的圖象上?若在請直接寫出該點坐標,若不在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案