【題目】如圖,拋物線y=﹣x2+2x+c與x軸交于A,B兩點(diǎn),它的對(duì)稱軸與x軸交于點(diǎn)N,過頂點(diǎn)M作ME⊥y軸于點(diǎn)E,連結(jié)BE交MN于點(diǎn)F,已知點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求該拋物線的解析式及頂點(diǎn)M的坐標(biāo).
(2)求△EMF與△BNF的面積之比.

【答案】
(1)解:由題意可得:﹣(﹣1)2+2×(﹣1)+c=0,

解得:c=3,

∴y=﹣x2+2x+3,

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴頂點(diǎn)M(1,4)


(2)解:∵A(﹣1,0),拋物線的對(duì)稱軸為直線x=1,

∴點(diǎn)B(3,0),

∴EM=1,BN=2,

∵EM∥BN,

∴△EMF∽△BNF,

=( 2=( 2=


【解析】(1)直接將(﹣1,0)代入求出即可,再利用配方法求出頂點(diǎn)坐標(biāo);(2)利用EM∥BN,則△EMF∽△BNF,進(jìn)而求出△EMF與△BNE的面積之比.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),連接AO并延長(zhǎng),交PB的延長(zhǎng)線于點(diǎn)C,連接PO,交⊙O于點(diǎn)D.
(1)求證:PO平分∠APC;
(2)連接DB,若∠C=30°,求證:DB∥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1、圖2為同一長(zhǎng)方體房間的示意圖,圖3為該長(zhǎng)方體的表面展開圖.
(1)蜘蛛在頂點(diǎn)A′處. ①蒼蠅在頂點(diǎn)B處時(shí),試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線.
②蒼蠅在頂點(diǎn)C處時(shí),圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過計(jì)算判斷哪條路線更近.
(2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長(zhǎng)度的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常數(shù)).
(1)當(dāng)k取1和2時(shí)的函數(shù)y1和y2的圖象如圖所示,請(qǐng)你在同一直角坐標(biāo)系中畫出當(dāng)k取0時(shí)的函數(shù)的圖象;
(2)根據(jù)圖象,寫出你發(fā)現(xiàn)的一條結(jié)論;
(3)將函數(shù)y2的圖象向左平移4個(gè)單位,再向下平移2個(gè)單位,得到的函數(shù)y3的圖象,求函數(shù)y3的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(1)班五位同學(xué)參加學(xué)校舉辦的數(shù)學(xué)素養(yǎng)競(jìng)賽.試卷中共有20道題,規(guī)定每題答對(duì)得5分,答錯(cuò)扣2分,未答得0分.賽后A,B,C,D,E五位同學(xué)對(duì)照評(píng)分標(biāo)準(zhǔn)回憶并記錄了自己的答題情況(E同學(xué)只記得有7道題未答),具體如下表

參賽同學(xué)

答對(duì)題數(shù)

答錯(cuò)題數(shù)

未答題數(shù)

A

19

0

1

B

17

2

1

C

15

2

3

D

17

1

2

E

/

/

7


(1)根據(jù)以上信息,求A,B,C,D四位同學(xué)成績(jī)的平均分;
(2)最后獲知A,B,C,D,E五位同學(xué)成績(jī)分別是95分,81分,64分,83分,58分. ①求E同學(xué)的答對(duì)題數(shù)和答錯(cuò)題數(shù);
②經(jīng)計(jì)算,A,B,C,D四位同學(xué)實(shí)際成績(jī)的平均分是80.75分,與(1)中算得的平均分不相符,發(fā)現(xiàn)是其中一位同學(xué)記錯(cuò)了自己的答題情況,請(qǐng)指出哪位同學(xué)記錯(cuò)了,并寫出他的實(shí)際答題情況(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點(diǎn),然后打開降落傘以75°的俯角降落到地面上的B點(diǎn).求他飛行的水平距離BC(結(jié)果精確到1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為n的正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)A1 , A2 , …,An1為OA的n等分點(diǎn),點(diǎn)B1 , B2 , …,Bn1為CB的n等分點(diǎn),連結(jié)A1B1 , A2B2 , …,An1Bn1 , 分別交曲線y= (x>0)于點(diǎn)C1 , C2 , …,Cn1 . 若C15B15=16C15A15 , 則n的值為 . (n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】提出問題:

(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說(shuō)明理由;
綜合運(yùn)用:
(3)在(2)問條件下,HF∥GE,如圖3所示,已知BE=EC=2,EO=2FO,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Word文本中的圖形,在圖形格式中大小菜單下顯示有圖形的絕對(duì)高度和絕對(duì)寬度,同一個(gè)圖形隨其放置方向的變化,所顯示的絕對(duì)高度和絕對(duì)寬度也隨之變化.如圖①、②、③是同一個(gè)三角形以三條不同的邊水平放置時(shí),它們所顯示的絕對(duì)高度和絕對(duì)寬度如下表,現(xiàn)有△ABC,已知AB=AC,當(dāng)它以底邊BC水平放置時(shí)(如圖④),它所顯示的絕對(duì)高度和絕對(duì)寬度如下表,那么當(dāng)△ABC以腰AB水平放置時(shí)(如圖⑤),它所顯示的絕對(duì)高度和絕對(duì)寬度分別是(

圖形

圖①

圖②

圖③

圖④

圖⑤

絕對(duì)高度

1.50

2.00

1.20

2.40

?

絕對(duì)寬度

2.00

1.50

2.50

3.60

?


A.3.60和2.40
B.2.56和3.00
C.2.56和2.88
D.2.88和3.00

查看答案和解析>>

同步練習(xí)冊(cè)答案