【題目】如圖,△ABC中,ABAC,以AC為直徑的OBC交于點(diǎn)D,經(jīng)過(guò)點(diǎn)D的直線EFAB于點(diǎn)E,與AC的延長(zhǎng)線交于點(diǎn)F

1)直線EF是否為O的切線?并證明你的結(jié)論.

2)若AE4BE1,試求cosA的值.

【答案】1)直線EFO的切線,證明詳見(jiàn)解析;(2

【解析】

1)連接OD,AD,根據(jù)圓周角定理以及等腰三角形的性質(zhì)可知DBC的中點(diǎn),利用中位線的性質(zhì)可知ODAB,從而可知∠ODE=∠BED90°.

2)設(shè)CFa,得出=,則=,解得a,可得出答案.

解:(1EFO的切線.理由如下:

連接ODAD,

ACO直徑,

ADBC

ABAC,

∴點(diǎn)DBC的中點(diǎn),

OAC的中點(diǎn),

OD是△ABC的中位線,

ODAB,

EFAB

∴∠ODE=∠BED90°,

ODO的半徑,

EFO的切線;

2)由(1)得,ODAB

AOOCOD,

設(shè)CFa,

ODAB

=

=,

20+8a25+5a

a,

AF5+

cosFAE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步提高全民節(jié)約用水意識(shí),某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動(dòng),李明隨機(jī)抽查了所住小區(qū)x戶(hù)家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖:

1)求x并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求這x戶(hù)家庭的月平均用水量;并估計(jì)李明所住小區(qū)620戶(hù)家庭中月用水量低于月平均用水量的家庭戶(hù)數(shù);

3)從月用水量為5m39m3的家庭中任選兩戶(hù)進(jìn)行用水情況問(wèn)卷調(diào)查,求選出的兩戶(hù)中月用水量為5m39m3恰好各有一戶(hù)家庭的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩隊(duì)參加了端午情,龍舟韻賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(秒)之間的函數(shù)圖象如圖所示,根據(jù)圖象有以下四個(gè)判斷:

①乙隊(duì)率先到達(dá)終點(diǎn);

②甲隊(duì)比乙隊(duì)多走了126米;

③在47.8秒時(shí),兩隊(duì)所走路程相等;

④從出發(fā)到13.7秒的時(shí)間段內(nèi),甲隊(duì)的速度比乙隊(duì)的慢.

所有正確判斷的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ADB、BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿(mǎn)足AE=DF連接BF與DE相交于點(diǎn)GCHBF,垂足為H連接CG若DG=,BG=,滿(mǎn)足下列關(guān)系:,則GH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB2BCMAB的中點(diǎn),則∠CMD( 。

A.是銳角B.是直角

C.是鈍角D.度數(shù)不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年節(jié)期間,紅星商場(chǎng)舉行抽獎(jiǎng)促銷(xiāo)活動(dòng),凡在本商場(chǎng)購(gòu)物總金額在300元以上者,均可抽一次獎(jiǎng),獎(jiǎng)品為精美小禮品.抽獎(jiǎng)辦法是:在一個(gè)不透明的袋子中裝有四個(gè)標(biāo)號(hào)分別為12,34的小球,它們的形狀、大小、質(zhì)地等完全相同.抽獎(jiǎng)?wù)叩谝淮蚊鲆粋(gè)小球,不放回,第二次再摸出一個(gè)小球,若兩次摸出的小球中有一個(gè)小球標(biāo)號(hào)為“1”,則獲獎(jiǎng).

1)請(qǐng)你用樹(shù)形圖或列表法表示出抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;

2)求抽獎(jiǎng)人員獲獎(jiǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過(guò)點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長(zhǎng)為1,當(dāng)t為何值時(shí),1的長(zhǎng)最大,并求最大值;(先根據(jù)題目畫(huà)圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫(xiě)出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車(chē),從入口處出發(fā)沿該公路開(kāi)往草甸,途中?克郑ㄉ舷萝(chē)時(shí)間忽略不計(jì)).第一班車(chē)上午8點(diǎn)發(fā)車(chē),以后每隔10分鐘有一班車(chē)從入口處發(fā)車(chē).小聰周末到該風(fēng)景區(qū)游玩,上午740到達(dá)入口處,因還沒(méi)到班車(chē)發(fā)車(chē)時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程y(米)與時(shí)間x(分)的函數(shù)關(guān)系如圖2所示.

1)求第一班車(chē)離入口處的路程y(米)與時(shí)間x(分)函數(shù)表達(dá)式.并寫(xiě)出x的取值范圍;

2)求第一班車(chē)從入口處到達(dá)塔林所需的時(shí)間;

3)小聰在塔林游玩40分鐘后,想坐班車(chē)到草甸,則小聰最早能夠坐上第幾班車(chē)?如果他坐這班車(chē)到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車(chē)速度均相同,小聰步行速度不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名射擊運(yùn)動(dòng)員在某場(chǎng)測(cè)試中各射擊10次,兩人的測(cè)試成績(jī)?nèi)缦拢?/span>

7 7 8 8 8 9 9 9 10 10

7 7 7 8 8 9 9 10 10 10

這兩人10次射擊命中的環(huán)數(shù)的平均數(shù)8.5,則測(cè)試成績(jī)比較穩(wěn)定的是 .(填“甲”或“乙”)

查看答案和解析>>

同步練習(xí)冊(cè)答案